

# Tema 5. Desbaste y tamizado





### **EJERCICIO 5.1**

En una ETAP dimensionada para una población futura de 75.000 habitantes y una dotación de 250 lts/hab·día y que se diseña para un factor de puntas de 2, se pretende diseñar el pretratamiento (rejas y areneros) con los siguientes valores:

- Número de líneas: 2
- Barrotes rectangulares
- Separación de las barras en la reja: 2 cm
- Espesor barras en la reja: 5 cm
- Máximo atascamiento permitido: 30%
- Diámetro medio de las arenas a eliminar: 0,3 mm (con un peso específico de 2,65 gr/cm³)

### Se pide:

- a) Dimensionar los canales de entrada en cada línea en que se instalaran rejillas
- b) Pérdida de carga en la rejilla si se coloca con una inclinación de 70° con la horizontal
- c) Dimensionamiento del arenero



# Tema 5. Desbaste y tamizado





En primer lugar obtenemos el caudal de diseño por línea:

$$Q_{dise\tilde{n}o} = 75.000 \ hab \cdot 250 \ l/hab \cdot dia = 18.750.000 \ l/dia$$

$$Q_{dise\tilde{n}o} = \frac{18.750.000 \cdot 10^{-3}}{24 \cdot 3.600} \ m^3 / s$$

$$Q_{dise\tilde{n}o} = 0.217 \ m^3 / s$$

Dado que tenemos un factor de puntas de 2 debemos multiplicar el caudal de diseño por dicho factor:

$$Q_{dise\tilde{n}o} = 2.0,217 = 0,434 \ m^3 / s$$

Como tenemos dos líneas de tratamiento, el caudal de diseño para cada una de ellas será:

$$Q_{linea} = \frac{0.434}{2} = 0.217 \ m^3 / s$$



# Tema 5. Desbaste y tamizado



## a) DIMENSIONAMIENTO DE LOS CANALES DE ENTRADA EN CADA LÍNEA

Tenemos los siguientes datos:

Barrote rectangular

Separación entre barras = 0,02 m (rejilla tipo medio)

Espesor de barras = 0.05 m

Adoptamos un valor para la velocidad de aproximación a la reja  $(v_c) = 0.6$  m/s (debe estar entre 0.3 y 0.6 m/s)

En función del caudal de diseño podemos dimensionar el canal de entrada a la planta

$$S_{entrada} = \frac{Q}{V} = \frac{0.217}{0.6} = 0.36 \text{ m}^2$$

Con este valor podemos suponer un canal de entrada de ancho 0,6 m, con un calado de 0,6 m.

Una vez obtenido el ancho del canal de entrada, vamos a calcular la anchura del canal en el punto de colocación de las rejillas.



# Tema 5. Desbaste y tamizado





$$W = \frac{Q_{\text{max}}}{v_r \cdot D} \left( \frac{b+s}{s} \right) + C$$

siendo:

 $W \rightarrow$  Ancho del canal en la zona de rejillas (m)

 $Q_{m\acute{a}x} \rightarrow$  Caudal máximo circulante (m<sup>3</sup>/s)

 $v_r \rightarrow \text{Velocidad máxima en rejillas (m/s)}$ 

 $D \rightarrow \text{Nivel aguas arriba de la rejilla a caudal máximo (m)}$ 

 $b \rightarrow$  Ancho de barrotes (m)

 $s \rightarrow$  Separación libre entre barrotes (m)

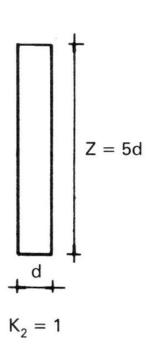
 $C \rightarrow$  Coeficiente de seguridad (0,1 rejilla fina; 0,3 rejilla gruesa)



# Tema 5. Desbaste y tamizado






$$\Delta h = k_1 \cdot k_2 \cdot k_3 \frac{v_c^2}{2g}$$

Obtenemos el valor de las diferentes constantes:

$$k_1 = \left(\frac{100}{70}\right)^2 = 2,04$$

Como vemos en la figura adjunta, el valor de  $K_2 = 1$  (sección rectangular)

Además, con los datos de la figura podemos obtener el ancho (d) del barrote = 0,01 m.





# Tema 5. Desbaste y tamizado





El valor de K<sub>3</sub> (coeficiente de la sección de paso entre barrotes) vendrá dado por la siguiente tabla en función de

 $e \rightarrow$  Espacio entre barrotes (s) = 0,02 m

d → Anchura de los barrotes = 0,01 m

 $z \rightarrow$  Espesor de los barrotes = 0,05 m

h → Altura sumergida de los barrotes, vertical y oblicua = 0,60 m

|                                                     | <u>e</u><br>e +d |      |      |      |      |      |      |      |      |      |  |
|-----------------------------------------------------|------------------|------|------|------|------|------|------|------|------|------|--|
| $\frac{z}{4}\left(\frac{2}{e} + \frac{1}{h}\right)$ | 0,1              | 0,2  | 0,3  | 0,4  | 0,5  | 0,6  | 0,7  | 0,8  | 0,9  | 1    |  |
| 0                                                   | 245              | 51,5 | 18,2 | 8,25 | 4,0  | 2,0  | 0,97 | 0,42 | 0,13 | 0    |  |
| 0,2                                                 | 230              | 48   | 17,4 | 7,70 | 3,75 | 1,87 | 0,91 | 0,40 | 0,13 | 0,01 |  |
| 0,4                                                 | 221              | 46   | 16,6 | 7,40 | 3,60 | 1,80 | 0,88 | 0,39 | 0,13 | 0,01 |  |
| 0,6                                                 | 199              | 42   | 15   | 6,60 | 3,20 | 1,60 | 0,80 | 0,36 | 0,13 | 0,01 |  |
| 0,8                                                 | 164              | 34   | 12,2 | 5,50 | 2,70 | 1,34 | 0,66 | 0,31 | 0,12 | 0,02 |  |
| 1                                                   | 149              | 31   | 11,1 | 5,00 | 2,40 | 1,20 | 0,91 | 0,29 | 0,11 | 0,02 |  |
| 1,4                                                 | 137              | 28,4 | 10,3 | 4,60 | 2,25 | 1,15 | 0,58 | 0,28 | 0,11 | 0,03 |  |
| 2                                                   | 134              | 27,4 | 9,90 | 4,40 | 2,20 | 1,13 | 0,58 | 0,28 | 0,12 | 0,04 |  |
| 3                                                   | 132              | 27,5 | 10,0 | 4,50 | 2,24 | 1,17 | 0,61 | 0,31 | 0,15 | 0,05 |  |

$$z/4 \cdot (2/e + 1/h) = 5/4 \cdot (2/2 + 1/60) = 1,271$$
  
 $e/(e+d) = 2/(2+1) = 0,66$ 



# Tema 5. Desbaste y tamizado





Por tanto, la pérdida de carga obtenida será de:

$$\Delta h = 2,041 \cdot 1 \cdot 0,78 \cdot \left(\frac{0,6^2}{2g}\right) = 0,03 \ m$$

Esta pérdida de carga se ha obtenido imponiendo una velocidad de aproximación a la reja de 0,60 m/s.

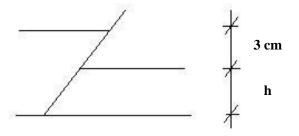
Por tanto, la sección mojada real tendrá una anchura de 0,6 m y un calado de 0,63 m (0,6 + 0,03 m).

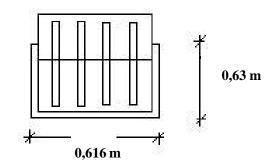
Verificamos la velocidad de aproximación:

$$v_c = \frac{Q}{S} = \frac{0.217}{0.6 \cdot 0.63} = 0.57 \ m/s$$

valor que resulta válido por pertenecer al intervalo 0,30 - 0,60 m/sg.

Finalmente, calculamos la anchura del canal en la sección donde se encuentran dispuestas las rejillas:





# Tema 5. Desbaste y tamizado



$$W = \frac{0.217}{1 \cdot 0.63} \left( \frac{1+2}{2} \right) + 0.1 = 0.616 \ m$$

Se ha adoptado un valor de C = 0,10 ya que, aunque la rejilla es propiamente de tipo medio (1,5-5 cm) se encuentra más cerca de la tipología fina, a la hora de asignar un valor al coeficiente de seguridad C.







# Tema 5. Desbaste y tamizado



### c) DIMENSIONAMIENTO DEL ARENERO

Partimos de los siguientes datos:

$$Q_{linea} = 0.217 \text{ m}^3/\text{s}$$

Diámetro partícula = 0,3 mm = 0,03 cm

Con el diámetro de la partícula entramos en la siguiente tabla (Manual de depuración URALITA) para obtener las diferentes velocidades de sedimentación y de arrastre:

### DATOS DE SEDIMENTACIÓN DE PARTÍCULAS

| d   | cm   | 0,005 | 0,010 | 0,020 | 0,030 | 0,040 | 0,050 | 0,10 | 0,20 | 0,30 | 0,50 | 1,00 |
|-----|------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|
| Vc  | cm/s | 0,2   | 0,7   | 2,3   | 4,0   | 5,6   | 7,2   | 15   | 27   | 35   | 47   | 74   |
| Vc' | cm/s | 0     | 0,5   | 1,7   | 3,0   | 4,0   | 5,0   | 11   | 21   | 26   | 33   |      |
| VH  | cm/s | 15    | 20    | 27    | 32    | 38    | 42    | 60   | 83   | 100  | 130  | 190  |

d = diámetro partícula de arena

V<sub>c</sub> = velocidad de sedimentación para un fluido con velocidad horizontal nula

V<sub>c'</sub> = velocidad de sedimentación para un fluido con velocidad horizontal V<sub>H</sub>

V<sub>H</sub> = velocidad horizontal crítica de arrastre de la partícula depositada



# Tema 5. Desbaste y tamizado



En este caso tendremos:

d = 0,03 cm 
$$\rightarrow$$
  $V_c = 4$  cm/s = 0,04 m/s  $V_{c'} = 3$  cm/s = 0,03 m/s  $V_b = 32$  cm/s = 0,32 m/s

A partir de estos datos podemos calcular la sección horizontal y transversal:

$$S_{horizontal} = \frac{Q}{V_c}$$

$$S_{vertical} = \frac{Q}{V_h}$$

$$S_{horizontal} = \frac{0.217}{0.04} = 5.425 \ m^2$$
  $S_{vertical} = \frac{0.217}{0.32} = 0.678 \ m^2$ 

$$S_{vertical} = \frac{0.217}{0.32} = 0.678 \ m^2$$

Calculamos las dimensiones de la SECCIÓN TRANSVERSAL (o vertical) considerando que los desarenadores normalmente son rectangulares (a = base, h = altura):

$$S_{trans} = a \cdot h$$



# N S

# Tema 5. Desbaste y tamizado

Las dimensiones de la sección transversal deben guardar una relación con el fin de que se puedan formar líneas de corriente:

$$1 < a/h < 5$$

Si adoptamos un valor intermedio de 3 podemos expresar  $\boldsymbol{a}$  en función de  $\boldsymbol{h} \rightarrow a = 3h$ 

De esta forma, como conocemos el valor de la sección transversal, podemos hallar el valor de las dimensiones:

$$0,678 = a \cdot h = 3h \cdot h = 3h^{2}$$

$$\begin{cases} h = 0,475 \ m \\ a = 1,426 \ m \end{cases}$$

Calculamos las dimensiones de la SECCIÓN LONGITUDINAL u horizontal (a = dimensión menor, L = dimensión mayor):

$$S_{long} = a \cdot L$$

$$5,425 = 1,426 \cdot L$$
  $\rightarrow$   $L = 3,8 m$ 



# Tema 5. Desbaste y tamizado



Por tanto, el volumen total del desarenador vendrá dado por:

$$V = a \cdot L \cdot h$$

$$V = a \cdot L \cdot h$$
  $V = 1,426 \cdot 3,8 \cdot 0,475 = 2,57 m^3$ 

Finalmente, calculamos el TIEMPO DE RETENCIÓN que debe estar comprendido entre 2 y 5 minutos (desarenadores simples):

$$T_{retención} = rac{V}{Q}$$

$$T_{retención} = \frac{V}{O}$$
 
$$T_{retención} = \frac{2,57}{0,217} = 11,87 \text{ s}$$

Este tiempo de retención es muy escaso, por lo que vamos a imponer en nuestro diseño un tiempo de retención mínimo de 2 minutos:

$$V = Q \cdot T_{retención} = 0,217 \cdot 120 = 26,04 \ m^3$$

Modificamos las dimensiones de la sección transversal con el fin de no tener un desarenador excesivamente largo:



# Tema 5. Desbaste y tamizado





$$L = \frac{26,04}{2,85 \cdot 0,95} = 9,61 \ m$$

Como la longitud todavía resulta excesiva, multiplicamos las dimensiones transversales por tres (a = 4,27, h = 1,42):

$$L = \frac{26,04}{4,27 \cdot 1,42} = 4,29 \ m$$

Este valor ya es aceptable, por lo que las dimensiones del desarenador serían las siguientes:

Longitud (L) = 
$$4,29 \text{ m}$$

Anchura (a) = 
$$4,27 \text{ m}$$

Altura (h) = 
$$1,42 \text{ m}$$

NOTA: Las referencias de las imágenes que aparecen en el ejercicio se encuentran incluidas en el tema correspondiente