

Universidad Politécnica de Cartagena

www.upct.es

DEPARTAMENTO DE INGENIERÍA QUÍMICA Y AMBIENTAL

Tema 3. FORMULACIÓN INORGÁNICA

1.- COMPUESTOS BINARIOS

COMBINACIONES BINARIAS DEL HIDRÓGENO

- Con los no metales: Haluros de hidrógeno (ácidos hidrácidos)
- Con los semimetales: Hidruros volátiles
- Con los metales: Hidruros metalicos

COMBINACIONES BINARIAS DEL OXÍGENO

Con los no metales: Óxidos ácidos (anhídridos)

Con los metales: Óxidos básicos 📐

Peróxidos **•**

SALES

No metal + metal : Sales neutras

No metal + no metal: Sales volátiles

2.- COMPUESTOS TERNARIOS

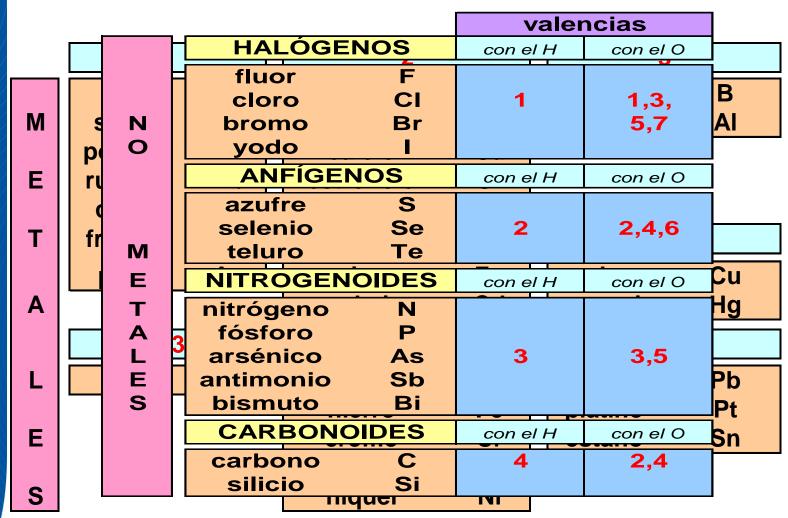
- ACIDOS OXOÁCIDOS: óxidos ácidos (anhídridos + agua)
- ACIDOS PEROXIÁCIDOS
- ÁCIDOS TIOÁCIDOS
- HIDRÓXIDOS (BASES): óxidos básicos + agua
- **SALES OXISALES NEUTRAS**

3.- COMPUESTOS CUATERNARIOS

- SALES OXISALES ÁCIDAS
- SALES OXISALES BÁSICAS SALES DOBLES

Con varios cationes

Con varios aniones


OTRAS SALES

4. COMPUESTOS DE COORDINACIÓN o COMPLEJOS

VALENCIAS más probables

Compuestos binarios

Combinaciones binarias del Hidrógeno

1.- ACIDOS HIDRÁCIDOS

Son compuestos en los que interviene un halógeno o un anfígeno y el Hidrógeno

El halógeno y el anfígeno se ponen a la derecha porque es más electronegativo que el hidrógeno

H₂S

Se nombran con el nombre del metal acabado en HÍDRICO

Ácido sulfhídrico

1.- ACIDOS HIDRÁCIDOS

Nombre tradicional

Nombre sistemático

HF: ácido fluorhídrico

HCI: ácido clorhídrico

HBr: ácido bromhídrico

HI: ácido yodhídrico

fluoruro de hidrógeno cloruro de hidrógeno bromuro de hidrógeno yoduro de hidrógeno

H₂S: ácido sulfhídrico

H₂Se: ácido selenhídrico

H₂Te: ácido telurhídrico

sulfuro de hidrógeno seleniuro de hidrógeno telururo de hidrógeno

Compuestos binarios

Combinaciones binarias del Hidrógeno

2.- HIDRUROS VOLÁTILES

Son compuestos en los que interviene un nitrogenoide o un carbonoide y el Hidrógeno

En estos compuestos el Hidrógeno se coloca a la derecha

 NH_3

Reciben nombres específicos

Amoniaco

1.- HIDRUROS VOLÁTILES

Nombre tradicional

NH₃: amoniaco

PH₃: fosfina

AsH₃: arsina

SbH₃: estibina

BiH₃: bismutina

CH₄: metano

SiH₄: silano

Compuestos binarios

Combinaciones binarias del Hidrógeno

3.- HIDRUROS METÁLICOS

Son compuestos en los que interviene un metal y el Hidrógeno

El Hidrógeno se pone a la derecha porque es el más electronegativo

Fe H₃

Se nombran con la palabra HIDRURO seguida del nombre del metal y en caso necesario se indica la valencia de éste.

Hidruro de hierro (III)

3.- HIDRUROS METÁLICOS

LiH: hidruro de litio

NaH: hidruro de sodio

KH: hidruro de potasio

RbH: hidruro de rubidio

CsH: hidruro de cesio

FrH: hidruro de francio

BeH2: hidruro de berilio

MgH₂: hidruro de magnesio

CaH₂: hidruro de calcio

AIH₃: hidruro de aluminio

CuH: hidruro de cobre (I) o hidruro cuproso

CuH₂: hidruro de cobre (II) ∘ hidruro cúprico

FeH₂: hidruro de hierro (II) o hidruro ferroso

FeH3: hidruro de hierro (IIII) o hidruro férrico

Compuestos binarios

Combinaciones binarias del Oxígeno

1.- ANHÍDRIDOS

Son compuestos en los que interviene un no-metal y el oxígeno

El oxígeno se pone a la derecha

Cl₂O₃

Se nombran con la palabra anhídrido, seguida del nombre del nometal con un sufijo que indica la valencia de éste. La valencia del oxígeno en estos compuestos es 2

Anhídrido cloroso

1.- ANHÍDRIDOS

)		nombre tradicional	nomenclatura de Stock	nomenclatura sistemática
/	Cl ₂ O	anhídrido hipocloroso	óxido de cloro (I)	monóxido de cloro
/ /	Cl ₂ O ₃	anhídrido cloroso	óxido de cloro (III)	trióxido de dicloro
	CI ₂ O ₅	anhídrido clórico	óxido de cloro (V)	pentóxido de dicloro
	Cl ₂ O ₇	anhídrido perclórico	óxido de cloro (VII)	heptóxido de dicloro
/	SO	anhídrido hiposulfuroso	óxido de azufre (II)	monóxido de azufre
/	SO ₂	anhídrido sulfuroso	óxido de azufre (IV)	dióxido de azufre
/	SO ₃	anhídrido sulfúrico	óxido de azufre (VI)	trióxido de azufre
	P_2O_3	anhídrido fosforoso	óxido de fósforo (III)	trióxido de difósforo
\	P ₂ O ₅	anhídrido fosfórico	óxido de fósforo (V)	pentóxido de difósforo
\	CO	anhídrido carbonoso	óxido de carbono (II)	monóxido de carbono
	CO ₂	anhídrido carbónico	óxido de carbono (IV)	dióxido de carbono

Compuestos binarios

Combinaciones binarias del Oxígeno

2.- ÓXIDOS

Son compuestos en los que interviene un metal y el oxígeno

El oxígeno se pone a la derecha

CaO

Se nombran con la palabra óxido, seguida del nombre del metal con un sufijo que indica la valencia de éste. La valencia del oxígeno en estos compuestos es 2

Óxido de calcio

2.- ÓXIDOS

	Nombre tradicional	nomenclatura de Stock	nomenclatura sistemática
B ₂ O ₃	óxido de boro	óxido de boro (III)	trióxido de diboro
Al ₂ O ₃	óxido de aluminio	óxido de aluminio (III)	trióxido de dialuminio
Cu ₂ O	óxido cuproso	óxido de cobre (I)	monóxido de dicobre
CuO	óxido cúprico	óxido de cobre (II)	monóxido de cobre
Hg ₂ O	óxido mercurioso	óxido de mercurio (I)	monóxido de dimercurio
HgO	óxido mercúrico	óxido de mercurio (II)	monóxido de mercurio
Au ₂ O	óxido auroso	óxido de oro (I)	monóxido de dioro
Au ₂ O ₃	óxido aúrico	óxido de oro (III)	trióxido de dioro
MnO	óxido manganoso	óxido de manganeso (II)	monóxido de manganeso
Mn_2O_3	óxido mangánico	óxido de manganeso (III)	trióxido de dimanganeso
FeO	óxido ferroso	óxido de hierro (II)	monóxido de hierro
Fe ₂ O ₃	óxido férrico	óxido de hierro (III)	trióxido de dihierro
PbO	óxido plumboso	óxido de plomo (II)	monóxido de plomo
PbO ₂	óxido plúmbico	óxido de plomo (IV)	dióxido de plomo
SnO	óxido estannoso	óxido de estaño (II)	monóxido de estaño
SnO ₂	óxido estánnico	óxido de estaño (IV)	dióxido de estaño

Compuestos binarios

Combinaciones binarias del Oxígeno

3.- PERÓXIDOS

Son compuestos en los que interviene un metal (alcalino o alcalino-térreo) y el grupo peroxo [(O₂)²⁻; - O - O -]

El grupo peroxo tiene valencia 2

Ca O₂

Se nombran con la palabra peróxido, seguida del nombre del metal

Peróxido de calcio

3.- PERÓXIDOS

Li₂O₂

 Na_2O_2

 K_2O_2

 Rb_2O_2

Cs₂O₂

 Fr_2O_2

peróxido de litio

peróxido de sodio

peróxido de potasio

peróxido de rubidio

peróxido de cesio

peróxido de francio

BeO₂

 MgO_2

CaO₂

SrO₂

BaO₂

RaO₂

peróxido de berilio

peróxido de magnesio

peróxido de calcio

peróxido de estroncio

peróxido de bario

peróxido de radio

Compuestos binarios

Sales

1.- SALES NEUTRAS

Son compuestos en los que interviene un metal y un no-metal

El no-metal actúa con la valencia que tiene con el hidrógeno y se sitúa a la derecha por ser más electronegativo

Ca Cl₂

Se nombran añadiendo la terminación URO al nombre del no-metal

Cloruro cálcico (o de calcio)

1.- SALES NEUTRAS

\			
	Nombre tradicional	nomenclatura de Stock	nomenclatura sistemática
NaCl	cloruro sódico	cloruro de sodio	cloruro de sodio
AICI ₃	cloruro alumínico	cloruro de aluminio (III)	tricloruro de aluminio
CuCl	cloruro cuproso	cloruro de cobre (I)	cloruro de cobre
CuCl ₂	cloruro cúprico	cloruro de cobre (II)	dicloruro de cobre
FeCl ₂	cloruro ferroso	cloruro de hierro (II)	dicloruro de hierro
FeCl ₃	cloruro férrico	cloruro de hierro (III)	tricloruro de hierro
K ₂ S	sulfuro potásico	sulfuro de potasio	sulfuro de dipotasio
CaS	sulfuro cálcico	sulfuro de calcio	sulfuro de calcio
B_2S_3	sulfuro bórico	sulfuro de boro (III)	trisulfuro de diboro
CrS	sulfuro cromoso	sulfuro de cromo (II)	sulfuro de cromo
Cr ₂ S ₃	sulfuro crómico	sulfuro de cromo (III)	trisulfuro de dicromo
PbS	sulfuro plumboso	sulfuro de plomo (II)	sulfuro de plomo
PbS ₂	sulfuro plúmbico	sulfuro de plomo (IV)	disulfuro de plomo
Fe ₃ N ₂	nitruro ferroso	nitruro de hierro (II)	dinitruro de trihierro
Na ₃ N	nitruro sódico	nitruro de sodio	nitruro de trisodio

Compuestos binarios

Sales

2.- SALES VOLÁTILES

Son compuestos en los que intervienen dos no-metales

El no-metal más electronegativo actúa con la valencia que tiene con el hidrógeno y se sitúa a la derecha

Se nombran añadiendo la terminación URO al nombre del no-metal más electronegativo

Fluoruro de bromo (III)

1.- SALES VOLÁTILES

	Nombre tradicional	nomenclatura de Stock	nomenclatura sistemática
BrCl	cloruro hipobromoso	cloruro de bromo (I)	cloruro de bromo
BrCl ₃	cloruro bromoso	cloruro de bromo (III)	tricloruro de bromo
BrCl ₅	cloruro brómico	cloruro de bromo (V)	pentacloruro de bromo
BrCl ₇	cloruro perbrómico	cloruro de bromo (VII)	heptacloruro de bromo
P ₂ S ₃	slufuro fosforoso	sulfuro de fósforo (III)	trisulfuro de difósforo
P ₂ S ₅	sulfuro fosfórico	sulfuro de fósforo (V)	pentasulfuro de difósforo
SbN	nitruro antimonioso	nitruro de antimonio (III)	nitruro de antimonio
Sb ₃ N ₅	nitruro antimónico	nitruro de antimonio (V)	pentanitruro de triantimonio

Compuestos ternarios 1.- ÁCIDOS OXOÁCIDOS

Se forman con los óxidos ácidos (anhidridos) + agua

a) Acidos oxoácidos de los halógenos, anfígenos y nitrógeno: se forman con una molécula de anhídrido y una de agua

$Cl_2O + H_2O \rightarrow HCIO$	Ácido hipocloroso	Oxoclorato (I) de hidrógeno
$Cl_2O_3 + H_2O \rightarrow HClO_2$	Ácido cloroso	Dioxoclorato (III) de hidrógeno
$Cl_2O_5 + H_2O \rightarrow HClO_3$	Ácido clórico	Trioxoclorato (V) de hidrógeno
$Cl_2O_7 + H_2O \rightarrow HClO_4$	Ácido perclórico	Tetraoxoclorato (VII) de hidrógeno
$SO + H_2O \rightarrow H_2SO_2$	Ácido hiposulfuroso	Dioxosulfato (II) de hidrógeno
$SO_2 + H_2O \rightarrow H_2SO_3$	Ácido sulfuroso	Trioxosulfato (IV) de hidrógeno
$SO_3 + H_2O \rightarrow H_2SO_4$	Ácido sulfúrico	Tetraoxosulfato (VI) de hidrógeno
$N_2O_3 + H_2O \rightarrow HNO_2$	Ácido nitroso	Dioxonitrato (III) de hidrógeno
$N_2O_5 + H_2O \rightarrow HNO_3$	Ácido nítrico	Trioxonitrato (V) de hidrógeno

1.- ÁCIDOS OXOÁCIDOS

b1) formados por una molécula de anhidrido y tres de agua Se obtienen con P, As, Sb, Bi, B, V (valencias 3, 5)

$$P_2O_3 + 3 H_2O \rightarrow \mathbf{H_3PO_3}$$
: ácido ortofosforoso trioxofosfato (III) de hidrógeno $P_2O_5 + 3 H_2O \rightarrow \mathbf{H_3PO_4}$: ácido ortofosfórico tetraoxofosfato (V) de hidrógeno)

b2) formados por dos moléculas de ORTO menos una de agua

```
2 H_3PO_3 - H_2O \rightarrow H_4P_2O_5: ácido pirofosforoso 2 H_3PO_4 - H_2O \rightarrow H_4P_2O_7: ácido pirofosforico
```

b3) formados por una molécula de ORTO menos una de agua

```
H_3PO_3 - H_2O \rightarrow HPO_2: ácido metafosforoso H_3PO_4 - H_2O \rightarrow HPO_3: ácido metafosfórico
```

Como el ácido más estable es el ORTO se suprime este prefijo

1.- ÁCIDOS OXOÁCIDOS

c1) formados por una molécula de anhidrido y dos de agua Se obtienen con C y Si (*valencias 2,4*)

$$CO + 2 H_2O \rightarrow H_4CO_3$$
: ácido ortocarbonoso $CO_2 + 2 H_2O \rightarrow H_4CO_4$: ácido ortocarbónico

c2) formados por dos moléculas de ORTO menos una de agua

$$2 H_4CO_3 - H_2O \rightarrow H_6C_2O_5$$
: ácido pirocarbonoso $2 H_4CO_4 - H_2O \rightarrow H_6C_2O_7$: ácido pirocarbónico

c3) formados por una molécula de ORTO menos una de agua

```
H_4CO_3 - H_2O \rightarrow H_2CO_2 : ácido metacarbonoso H_4CO_4 - H_2O \rightarrow H_2CO_3 : ácido metacarbónico
```

Como el ácido más estable es el META se suprime este prefijo

1.- ÁCIDOS OXOÁCIDOS

d) ácidos del Mn, Tc y Re (con valencias 4, 6,7)

```
MnO_2 + H_2O \rightarrow H_2MnO_3: ácido manganoso

MnO_3 + H_2O \rightarrow H_2MnO_4: ácido mangánico

Mn_2O_7 + H_2O \rightarrow HMnO_4: ácido permangánico
```

e) ácidos del Cr , Mo y W (valencia 6)

```
CrO<sub>3</sub> + H<sub>2</sub>O → H<sub>2</sub>CrO<sub>4</sub> : ácido crómico
2 H<sub>2</sub>CrO<sub>4</sub> - H<sub>2</sub>O → H<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>: ácido percrómico (dicrómico)
```


2.- ÁCIDOS PEROXIÁCIDOS

Se obtienen sustituyendo un grupo oxo (O^{2-}) por un grupo peroxo (O_2^{2-})

Del ácido nítrico: HNO3

se obtiene el ácido peroxonítrico: HNO4

Del ácido carbónico: H2CO3

se obtiene el ácido peroxocarbónico: H2CO4

3.- ÁCIDOS TIOÁCIDOS

Son ácidos que se obtienen a partir de los oxoácidos correspondientes, sustituyendo átomos de oxígeno por átomos de azufre

Del ácido sulfúrico H₂SO₄ se obtiene el ácido tiosulfúrico H₂S₂O₃

Del ácido sulfúroso H₂SO₃ se obtiene el **ácido tiosulfúroso** H₂S₂O₂

Del ácido fosfórico H₃PO₄ se obtiene el ácido tiofosfórico H₃PO₃S

4.- HIDRÓXIDOS o BASES

Los hidróxidos se caracterizan por tener el grupo (OH)⁻ de valencia -1, unido a un metal. Estos compuestos se llaman hidróxidos o bases por el carácter básico de sus disoluciones acuosas.

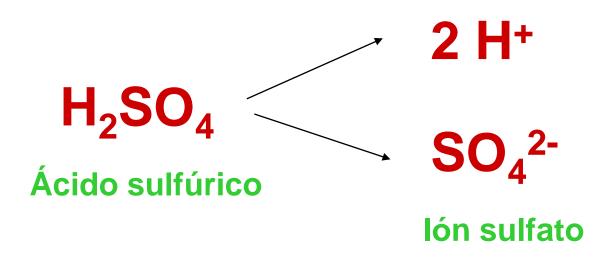
Se nombran con la palabra genérica hidróxido seguida del nombre del metal.

El metal se coloca siempre a la izquierda por el ser menos electronegativo que el grupo (OH)-

Fe(OH)₃: hidróxido férrico o hidróxido de hierro (III)

Ca(OH)₂: hidróxido cálcico o hidróxido de calcio

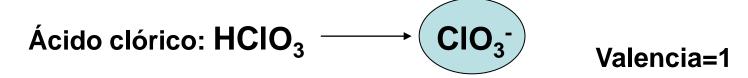
LiOH: hidróxido de litio



5.- SALES OXISALES NEUTRAS

Provienen de los ácidos oxoácidos al sustituir los protones del ácido por un metal

Cuando un ácido pierde sus protones, se transforma en un anión (ión negativo) cuyo nombre acaba en ATO o en ITO dependiendo de que el ácido acabe en ICO o en OSO

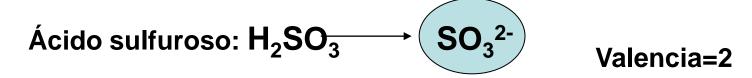

ACIDOS OXOÁCIDOS Y SUS IONES

ácido	nombre	protones	anión	nombre
HCIO	ácido hipocloroso	1 H ⁺	CIO	hipoclorito
HCIO ₂	ácido cloroso	1 H ⁺	CIO ₂	clorito
HCIO ₃	ácido clórico	1 H ⁺	CIO ₃	clorato
HCIO ₄	ácido perclórico	1 H ⁺	CIO ₄	perclorato
H ₂ SO ₂	ácido hiposulfuroso	2 H ⁺	SO ₂ ²⁻	hiposulfito
H_2SO_3	ácido sulfuroso	2 H ⁺	SO ₃ ²⁻	sulfito
H ₂ SO ₄	ácido sulfúrico	2 H [†]	SO ₄ ²⁻	sulfato
HNO ₂	ácido nitroso	1 H ⁺	NO ₂	nitrito
HNO ₃	ácido niítrico	1 H ⁺	NO_3^-	nitrato
HPO ₂	ácido metafosforoso	1 H ⁺	PO ₂	metafosfito
HPO_3	ácido metafosfórico	1 H ⁺	PO_{3}^{-} $P_{2}O_{5}^{-4-}$ $P_{2}O_{7}^{-4-}$	metafosfato
$H_4P_2O_5$	ácido pirofosforoso	4 H ⁺	$P_2O_5^{4-}$	pirofosfito
$H_4P_2O_7$	ácido pirofosfórico	4 H ⁺	$P_2O_7^{4-}$	pirofosfato
H_3PO_3	ácido fosforoso	3 H ⁺	PO_3^{3-}	fosfito
H ₃ PO ₄	ácido fosfórico	3 H ⁺	PO ₄ ³⁻	fosfato
H ₂ CO ₂	ácido carbonoso	2 H ⁺	CO_2^{2-}	carbonito
H_2CO_3	ácido carbónico	2 H ⁺	CO_3^{2}	carbonato
$H_6C_2O_5$	ácido pirocarbonoso	6 H ⁺	$C_2O_5^{6-}$	pirocarbonito
$H_6C_2O_7$	ácido pirocarbónico	6 H ⁺	C ₂ O ₇ ⁶⁻	pirocarbonato
H ₄ CO ₃	ácido ortocarbonoso	4 H ⁺	CO ₃ ⁴⁻	ortocarbonito
H ₄ CO ₄	ácido ortocarbónico	4 H ⁺	CO ₄ -	ortocarbonato

Clorato de hierro (III)

Como la sal acaba en ATO, viene de un ácido acabado en ICO

Anión clorato


La valencia de un ión es igual al número de cargas que tiene

Fe
$$(CIO_3)_3$$

Sulfito de plomo (IV)

Como la sal acaba en ITO, viene de un ácido acabado en OSO

Anión sulfito

La valencia de un ión es igual al número de cargas que tiene

Pirofosfato de estaño (II)

Como la sal acaba en ATO, viene de un ácido acabado en ICO

Ácido pirofosfórico:
$$H_4P_2O_7 \longrightarrow P_2O_7^{4-}$$

Valencia=4

Anión pirofosfato

La valencia de un ión es igual al número de cargas que tiene

Compuestos cuaternarios

1.- SALES OXISALES ÁCIDAS

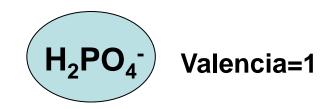
Provienen de la sustitución parcial de los protones del ácido por un metal Se nombran como las sales neutras, intercalando la palabra ácido precedida por uno de estos prefijos: mono (se omite), di, tri, etc, según el número de hidrógenos que contiene la molécula

EFEMENTO Groffmacsel USO sapleede originar dos aniones:

Si cede la frate la contrata l

Si cedStilfato ácido de Calcio: A da (1986) ácido

Fosfato ácido de hierro (III)


Ácido fosfórico: H₃PO₄

Anión fosfato ácido

Fosfato diácido de hierro (III)

Ácido fosfórico: H₃PO₄

Anión fosfato diácido

Fe
$$(H_2 PO_4)_3$$

Si el ácido tiene dos protones y sólo cede uno, el anión derivado de ese ácido puede nombrarse con el prefijo bi

Bicarbonato pálaisio (cararbonatat á áicid de e adota sio)

Ácido carbónico: H₂CO₃ -----

HCO₃

Valencia=1

Anión bicarbonato o carbonato ácido

 $CK(HCO^3)^5$

Compuestos cuaternarios

2.- SALES OXISALES BÁSICAS

Se originan cuando en una reacción de neutralización (ácido + base = sal + agua) hay un exceso de hidróxido respecto del ácido. Son compuestos que poseen algún grupo OH⁻

Se nombran como las sales neutras intercalando la palabra básico precedida del prefijo mono (se omite), di, tri, etc, según el número de grupos OH⁻ presentes en la fórmula.

$$HRW_3LPMg(OH)_2 \longrightarrow Mg(OH)NO_3 + H_2O$$

Nitrato básico de magnesio

SALES OXISALES BÁSICAS

ácido	base	sal básica	nombre
HNO ₃	Hg(OH) ₂	Hg(OH)NO ₃	nitrato básico de mercurio (II)
HCI	Ca(OH) ₂	Ca(OH)CI	cloruro básico de calcio
H ₂ SO ₄	AI(OH) ₃	AI(OH)SO ₄	sulfato básico de aluminio
HCIO ₄	AI(OH) ₃	AI(OH) ₂ CIO ₄	perclorato dibásico de aluminio
H ₂ CO ₃	Fe(OH) ₃	Fe(OH)CO ₃	carbonato básico de hierro (III)
HBr	Cd(OH) ₂	Cd(OH)Br	bromuro básico de cadmio
H ₂ SO ₄	2 Cu(OH) ₂	Cu ₂ (OH) ₂ SO ₄	sulfato dibásico de cobre (II)

Compuestos cuaternarios

3.- SALES DOBLES, TRIPLES, ...

3a. Con varios cationes

Se originan las sustituir los protones de un ácido por más de un catión

Se nombran igual que las sales neutras colocando inmediatamente después del nombre del anión y entre paréntesis la palabra doble, triple, etc, según el número de cationes (metales) distintos y colocando al final el nombre de los mismos en orden alfabético con prefijos di, tri, etc, según los subíndices de dichos metales en la fórmula.

SALES DOBLES, TRIPLES ... Con varios cationes

			sal doble	nombre
Na ₂ SO ₄	K ₂ SO ₄	Na ₂ K ₂ (SO ₄) ₂	KNaSO ₄	sulfato (doble) de potasio y sodio
CaSO ₄	Na ₂ SO ₄		CaNa ₂ (SO ₄) ₂	sulfato (doble) de calcio y disodio
$Mg_3(AsO_4)_2$	(NH ₄) ₃ AsO ₄	$Mg_3(NH_4)_3(AsO_4)_3$	NH ₄ MgAsO ₄	arseniato (doble) de amonio y magnesio
(NH ₄) ₂ SO ₄	$Cr_2(SO_4)_3$	(NH ₄) ₂ Cr ₂ (SO ₄) ₄	NH ₄ Cr(SO ₄) ₂	sulfato (doble) de amonio y cormo (III)
Co ₃ (PO ₄) ₂	Na ₃ PO ₄	Co ₃ Na ₃ (PO ₄) ₃	CoNaPO ₄	Fosfato doble de cobalto (II) y sodio
KCI	MgCl ₂		MgKCl ₃	Cloruro doble de magnesio y potasio
CaCO ₃	MgCO ₃		CaMg(CO ₃) ₂	Carbonato doble de calcio y magnesio
Li ₃ PO ₄	K ₃ PO ₄	Na ₃ PO ₄	LiKNaPO ₄	Fosfato triple de litio, potasio y sodio

Compuestos cuaternarios

3.- SALES DOBLES, TRIPLES, ...

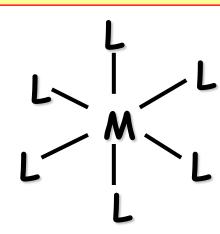
3b. Con varios aniones

Estas sales son el resultado de unir a un metal plurivalente con aniones procedentes de ácidos que han perdido uno o varios protones.

Se nombran con las palabras de sus respectivos aniones, por orden alfabético, seguidas por el nombre del metal.

SALES DOBLES, TRIPLES ... Con varios anines

			sal doble	nombre
CaCl ₂	Ca(CIO) ₂	Ca ₂ Cl ₂ (ClO) ₂	CaCICIO	Cloruro-hipoclorito de calcio
AlBr ₃	Al ₂ (CO ₃) ₃	$Al_3Br_3(CO_3)_3$	AlBrCO ₃	Bromuro-carbonato de aluminio
CaF ₂	3Ca ₃ (PO ₄) ₂	Ca ₁₀ F ₂ (PO ₄) ₆	Ca ₅ F(PO ₄) ₃	Fluoruro-(tris)fosfato de calcio
NaCl	NaF	2Na ₂ SO ₄	Na ₆ CIF(SO ₄) ₂	Cloruro-fluoruro-(bis) sulfato de sodio
PbCl ₄	Pb ₃ (PO ₄) ₄	Pb ₄ Cl ₄ (PO ₄) ₄	PbCIPO ₄	Cloruro-fosfato de plomo (IV)
Pb(CO ₃) ₂	Pb(SO ₄) ₂	Pb ₂ (CO ₃) ₂ (SO ₄) ₂	PbCO ₃ SO ₄	Carbonato-sulfato de plomo (IV)


Compuestos de coordinación (complejos)

Son estructuras moleculares generalmente formadas por un átomo central que posee orbitales de valencia no ocupados, rodeado por un cierto número de moléculas o iones (ligandos) que poseen pares de electrones no compartidos.

Se forman enlaces covalentes entre los orbitales vacíos del átomo central y un orbital lleno de cada ligando.

El átomo central suele ser un metal de transición o transición interna (con orbitales d y/o f vacíos), con o sin carga.

Indice de coordinación → número de ligandos que rodean al átomo central

Los ligandos pueden ser moléculas neutras o iones. Aquí aparecen los nombres de los más sencillos. Pueden llegar a ser moléculas orgánicas bastante largas que se unen al átomo central por varios puntos (ligandos polidentados o quelatos).

H ₂ O AQUA O ²⁻ OXO NH ₃ AMMIN/NO O ₂ ²⁻ PEROXO	
NH ₃ AMMIN/NO O ₂ ²⁻ PEROXO	
CO CARBONILO OH- HIDROXO	
CN- CIANO O ₂ DIOXÍGENO	
F- FLUORO SH- MERCAPTO	
CI- CLORO N ₂ DINITRÓGENO	
Br ⁻ BROMO NO NITROSIL(O)	
I⁻ YODO -SCN TIOCIANATO ← (ambiden	tado)
NH ₂ - AMIDO -NCS ISOTIOCIANATO	,

FORMULACIÓN

- Los complejos se escriben entre corchetes.
- •Dentro de los corchetes se escribe primero el átomo central, luego los aniones y por último las especies neutras.
- •De haber dos o más especies con el mismo tipo de carga, se ordenan alfabéticamente de acuerdo al átomo que se encuentra unido al átomo central.
- •Por último y por fuera de los corchetes, se escribe como superíndice la carga total del complejo (suma total de cargas entre átomo central y ligandos).

Ejemplos: $[Fe(CN)_5(OH_2)]^{2-}$

 $[CrCl(NH_3)_5]^{2+}$

NOMENCLATURA

- •Se citan primero los ligandos, y estos en orden alfabético, utilizando los prefijos di-, tri-, etc. en caso de que haya varios ligandos iguales.
- •A continuación se nombra al átomo central de la siguiente manera:
 - -Si se trata de un complejo ANIONICO se utiliza la raíz del nombre del átomo central seguida de la terminación ATO, y al final entre paréntesis se escribe el estado de oxidación del átomo central con números romanos.
 - -Si se trata de un complejo CATIONICO o NEUTRO no se añade ningún sufijo al nombre del átomo central.

 $[Fe(CN)_5(OH_2)]^{2-}$ ión aquapentacianoferrato (III) $[CrCl(NH_3)_5]^{2+}$ ión cloropentaamincromo (III)

Ejemplos:

[Fe(CO)₅] Pentacarbonilhierro (0)

[Ni(CN)₄]²⁻ Ión tetracianoníquel (II)

(Los complejos iónicos pueden formar sales con iones o complejos de carga opuesta.)

K₄[Fe(CN)₆] hexacianoferrato (II) de potasio

Mg₂[Ni(CN)₆] hexacianoniquelato(II) de magnesio

[Co(OH₂)₆]Cl₂ cloruro de hexaaquacobalto(II)

[Cu(NH₃)₄]SO₄ sulfato de tetrammincobre(II)

[CoBr₂(CO)₂]CI cloruro de dibromomodicarbonilcobalto(III)

[Pt(NH₃)₄][PtCl₆)] hexacloroplatinato(IV) de tetraamminplatino(II)