Modelización de la línea por cuadripolos

Juan Alvaro Fuentes Moreno juanalvaro.fuentes@upct.es

Departamento de Ingeniería Eléctrica Universidad Politécnica de Cartagena

enero 2012

Índice

1 Introducción

2 Modelo de la línea con parámetros distribuidos

Caída de tensión en líneas inductivas: fórmula exacta y aproximada

Introducción

- Interesa relacionar tensiones e intensidades del origen con las del destino
- En temas anteriores se han estudiado los parámetros R, L, G y C
- Puesto que la línea es complicada de modelar se suelen hacer simplificaciones
 - Modelo de la línea de parámetros distribuidos
 - Se supone que el estado de operación de la línea es equilibrado
 - Además los parámetros se distribuyen uniformemente a lo largo de la línea
 - Un poco de historia:
 - En 1855 William Thomson (Lord Kelvin) inició el estudio de la línea eléctrica ante la pregunta de si sería factible una línea telegráfica entre Europa-EEUU
 - En 1885 Oliver Heaviside lo completó

Primero vamos a ver la obtención física del circuito equivalente de un elemento de la línea de longitud Δx

- En temas anteriores hemos visto como calcular el flujo en la superficie que hay entre un conductor y el neutro y la carga en la superficie del conductor
 - Inductancia aparente $\Rightarrow \Phi = LI$
 - Capacidad aparente $\Rightarrow Q = CV$

- ¿Como se llega al circuito equivalente partiendo del modelo físico? ⇒ Leyes de Kirchhoff
 - Cálculo del trabajo a lo largo de una curva cerrada
 - Principio de conservación de las cargas en un volumen

Modelo físico de un elemento de línea: cálculo del trabajo

Modelo físico de un elemento de línea: cálculo del trabajo (II)

Igualando (1 = 2+3): RΔx · i(x, t) + u(x + Δx, t) - u(x) = -LΔx · ∂i(x,t)/∂t
 Y, reordenando términos:

 $u(x + \Delta x, t) - u(x) = -R\Delta x \cdot i(x, t) - L\Delta x \cdot \frac{\partial i(x, t)}{\partial t}$

JAFM (Ingeniería Eléctrica UPCT)

Modelo físico de un elemento de línea: conservación de la carga

Principio de conservacion de la carga

Principio de conservación de la carga:

Suma de cargas que entran igual a la variación de la carga en el volumen

$$i(x,t)\Delta t - i(x + \Delta x, t)\Delta t - G\Delta x u(x + \Delta x, t)\Delta t = Q(t + \Delta t) - Q(t)$$

Dividiendo por Δt y haciendo el límite $\Delta t \rightarrow 0$

$$i(x,t) - i(x + \Delta x, t) - G\Delta x \cdot u(x + \Delta x, t) = \frac{\partial Q}{\partial t}$$

Teniendo en cuenta que $Q(t) = C\Delta x \cdot u(x + \Delta x, t)$, reordenando y despreciando infinitésimos de segundo orden:

$$i(x + \Delta x, t) - i(x, t) = -G\Delta x \cdot u(x, t) - C\Delta x \cdot \frac{\partial u(x, t)}{\partial t}$$

Índice

1 Introducción

2 Modelo de la línea con parámetros distribuidos

3 Caída de tensión en líneas inductivas: fórmula exacta y aproximada

Circuito equivalente de un elemento de línea: solución general

La escritura de las leyes de Kirchhoff al elemento de línea Δx permiten obtener las mismas ecuaciones que las del modelo físico \Rightarrow Circuito equivalente

$$u(x + \Delta x, t) - u(x) = -R\Delta x \cdot i(x, t) - L\Delta x \cdot \frac{\partial I(x, t)}{\partial t}$$
$$i(x + \Delta x, t) - i(x, t) = -G\Delta x \cdot u(x, t) - C\Delta x \cdot \frac{\partial u(x, t)}{\partial t}$$

Dividiendo por Δx y haciendo el límite $\Delta x \rightarrow 0$

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$
(1)
$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Cuya solución general son las ecuaciones de ondas viajeras en la línea

$$u(x,t) = f(t \pm x/c)$$
(2)
$$i(x,t) = f(t \pm x/c)$$

Puesto que los sistemas eléctricos utilizan tensiones e intensidades senoidales interesa obtener soluciones ante excitaciones senoidales

$$u(x,t) = \operatorname{Re}(\overline{U}e^{jw(t\pm x/\overline{c})}) = \operatorname{Re}(\overline{U}(x)e^{jwt})$$
(3)
$$i(x,t) = \operatorname{Re}(\overline{I}e^{jw(t\pm x/\overline{c})}) = \operatorname{Re}(\overline{I}(x)e^{jwt})$$

Sustituyendo estas soluciones en (1) obtenemos las ecuaciones en el dominio de la frecuencia

$$\frac{d\bar{U}(x)}{dx} = -(R + jwL)\bar{I}(x) = -\bar{z}\bar{I}(x)$$

$$\frac{d\bar{I}(x)}{dx} = -(G + jwC)\bar{U}(x) = -\bar{y}\bar{U}(x)$$
(4)

Donde se han introducido las variables z̄ = R + jwL (Ω/m) y ȳ = G + jwC (S/m)
 Cuya solución para la dependencia espacial es:

$$\overline{U}(x) = \overline{U}_i e^{-\overline{\gamma}x} + \overline{U}_r e^{+\overline{\gamma}x}$$

$$\overline{I}(x) = \overline{I}_i e^{-\overline{\gamma}x} + \overline{I}_r e^{+\overline{\gamma}x}$$
(5)

Definiendo la *constante de propagación*, $\overline{\gamma}$, como: $\overline{\gamma} \triangleq \sqrt{\overline{z}\overline{y}} = \alpha + j\beta$

A α se le conoce como *cte de atenuacion* y a β como *cte de fase*

JAFM (Ingeniería Eléctrica UPCT)

Significado de las soluciones: onda incidente y reflejada

Las soluciones en el tiempo y en el espacio serían:

$$u(x,t) = U_i e^{-\alpha x} \operatorname{Re}[e^{i(wt - \beta x + \phi_{U_i})}] + U_r e^{\alpha x} \operatorname{Re}[e^{i(wt + \beta x + \phi_{U_r})}]$$
(6)
$$i(x,t) = I_i e^{-\alpha x} \operatorname{Re}[e^{j(wt - \beta x + \phi_{I_i})}] + I_r e^{\alpha x} \operatorname{Re}[e^{i(wt + \beta x + \phi_{I_r})}]$$

Ondas incidente, reflejada y suma de ambas

Figura: Ondas propagándose en la línea

Puesto que son ondas:

E Longitud de onda,
$$\lambda = rac{2\pi}{eta}$$

Velocidad de fase,
$$v = \frac{\omega}{\beta}$$

- Para determinar la solución particular a partir de la general hay que determinar las constantes \overline{U}_i , \overline{U}_r , \overline{I}_i y \overline{I}_r
 - De estas cuatro sólo dos son independientes:

$$\overline{U}_i = \overline{Z}_c \overline{I}_i \overline{U}_r = -\overline{Z}_c \overline{I}_r$$

Definiendo a la *impedancia característica* como: $\overline{Z}_c \triangleq \sqrt{\frac{\overline{z}}{\overline{v}}} (\Omega/m)$

Determinar \overline{U}_i , \overline{U}_r , \overline{I}_i y \overline{I}_r a partir de las condiciones de contorno no es conveniente

- Las condiciones son dos *fasores* de tensiones e intensidades, a elegir entre origen y destino, y habría que separarlas en parte incidente y reflejada ⇒ Inconveniente
- Es mas conveniente aplicar dichas condiciones sin tener que separarlas en parte incidente y parte reflejada ⇒ Solución en forma hiperbólica

$$\begin{split} \bar{U}(x) &= \bar{U}_i e^{-\bar{\gamma}x} + \bar{U}_r e^{+\bar{\gamma}x} \\ &= (\bar{U}_i + \bar{U}_r) \frac{e^{\bar{\gamma}x} + e^{-\bar{\gamma}x}}{2} + (\bar{U}_r - \bar{U}_i) \frac{e^{\bar{\gamma}x} - e^{-\bar{\gamma}x}}{2} \\ &= \bar{K}_1 \cosh(\bar{\gamma}x) + \bar{K}_2 \operatorname{senh}(\bar{\gamma}x) \end{split}$$

Solución en forma hiperbólica

$$\overline{U}(x) = \overline{K}_1 \cosh(\overline{\gamma}x) + \overline{K}_2 \operatorname{senh}(\overline{\gamma}x)$$
(7)
$$\overline{I}(x) = \overline{K}_3 \cosh(\overline{\gamma}x) + \overline{K}_4 \operatorname{senh}(\overline{\gamma}x)$$
(8)

• Determinación de K_1 y K_3

• En x = 0 se cumple $\overline{U}(x) = \overline{U}(0)$ y $\overline{I}(x) = \overline{I}(0) \Rightarrow$

$$\bar{K}_1 = \bar{U}(0)$$
$$\bar{K}_3 = \bar{I}(0)$$

Determinación de K₂ y K₄

■ Sustituyendo las soluciones hiperbólicas, (7) y (8), en (4):

$$\begin{split} \bar{K}_1\bar{\gamma} \operatorname{senh}(\gamma x) + \bar{K}_2\bar{\gamma} \cosh(\gamma x) &= -\bar{z}(\bar{K}_3\cosh(\bar{\gamma} x) + \bar{K}_4 \operatorname{senh}(\bar{\gamma} x))\\ \bar{K}_3\bar{\gamma} \operatorname{senh}(\gamma x) + \bar{K}_4\bar{\gamma}\cosh(\gamma x) &= -\bar{y}(\bar{K}_1\cosh(\bar{\gamma} x) + \bar{K}_2 \operatorname{senh}(\bar{\gamma} x)) \end{split}$$

Estas dos ecuaciones se deben cumplir para todo punto, en especial para $x = 0 \Rightarrow$

$$ar{K}_2 = -rac{ar{z}}{ar{\gamma}}ar{K}_3 = -rac{ar{z}}{\sqrt{ar{z}ar{y}}}ar{l}(0) = -ar{Z}_car{l}(0)
onumber \ ar{K}_4 = -rac{ar{y}}{ar{\gamma}}ar{K}_1 = -rac{ar{y}}{\sqrt{ar{z}ar{y}}}ar{U}(0) = -rac{1}{ar{Z}_c}ar{U}(0)$$

Donde $\bar{Z}_c = \sqrt{\frac{\bar{z}}{\bar{y}}} (\Omega/m)$ es la impedancia característica

Parámetros de transmisión de la línea

Solución hiperbólica:

$$\begin{split} \bar{U}(x) &= \bar{U}(0) \cosh(\bar{\gamma}x) - \bar{Z}_c \bar{I}(0) \sinh(\bar{\gamma}x) \\ \bar{I}(x) &= -\frac{\bar{U}(0)}{\bar{Z}_c} \sinh(\bar{\gamma}x) + \bar{I}(0) \cosh(\bar{\gamma}x) \end{split}$$

■ Solución en forma matricial:

$$\begin{bmatrix} \bar{U}(x) \\ \bar{I}(x) \end{bmatrix} = \begin{bmatrix} \cosh(\bar{\gamma}x) & -\bar{Z}_c \operatorname{senh}(\bar{\gamma}x) \\ -\frac{1}{\bar{Z}_c} \operatorname{senh}(\bar{\gamma}x) & \cosh(\bar{\gamma}x) \end{bmatrix} \begin{bmatrix} \bar{U}(0) \\ \bar{I}(0) \end{bmatrix}$$
(9)

Parámetros de transmisión de la línea

Invirtiendo la solución matricial para x = l:

$$\begin{bmatrix} \bar{U}(0)\\ \bar{I}(0) \end{bmatrix} = \begin{bmatrix} \cosh(\bar{\gamma}I) & +\bar{Z}_c \operatorname{senh}(\bar{\gamma}I)\\ \frac{1}{\bar{Z}_c} \operatorname{senh}(\bar{\gamma}I) & \cosh(\bar{\gamma}I) \end{bmatrix} \begin{bmatrix} \bar{U}(I)\\ \bar{I}(I) \end{bmatrix}$$
(10)

Permite obtener los parámetros de transmisión de la línea:

$$\bar{A} = \cosh(\bar{\gamma}l)$$
$$\bar{B} = \bar{Z}_c \operatorname{senh}(\bar{\gamma}l)$$
$$\bar{C} = \frac{1}{\bar{Z}_c} \operatorname{senh}(\bar{\gamma}l)$$
$$\bar{D} = \cosh(\bar{\gamma}l)$$

Modelo en pi equivalente de la línea de transmisión

Circuito en pi equivalente

Calculando sus parámetros de transmisión

$$\begin{bmatrix} \bar{U}(0) \\ \bar{I}(0) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \bar{Y}_{\rho 1} & 1 \end{bmatrix} \begin{bmatrix} 1 & \bar{Z}_s \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \bar{Y}_{\rho 2} & 1 \end{bmatrix} \begin{bmatrix} \bar{U}(I) \\ \bar{I}(I) \end{bmatrix} = \begin{bmatrix} 1 + \bar{Y}_{\rho 2}\bar{Z}_s & \bar{Z}_s \\ \bar{Y}_{\rho 1} + \bar{Y}_{\rho 2} + \bar{Y}_{\rho 1}\bar{Y}_{\rho 2}\bar{Z}_s & 1 + \bar{Y}_{\rho 1}\bar{Z}_s \end{bmatrix} \begin{bmatrix} \bar{U}(I) \\ \bar{I}(I) \end{bmatrix}$$

E igualando con los obtenidos para la línea obtenemos los parámetros del π equivalente que, como se puede ver, es simétrico:

$$\bar{Z}_s = \bar{Z}_c \operatorname{senh}(\bar{\gamma} I)$$

$$\begin{split} \bar{Y}_{p2} &= \frac{1}{\bar{Z}_c} \frac{\cosh(\bar{\gamma}l) - 1}{\operatorname{senh}(\bar{\gamma}l)} = \frac{1}{\bar{Z}_c} \tanh\left(\frac{\bar{\gamma}l}{2}\right) \\ \bar{Y}_{p1} &= \frac{1}{\bar{Z}_c} \frac{\cosh(\bar{\gamma}l) - 1}{\operatorname{senh}(\bar{\gamma}l)} = \frac{1}{\bar{Z}_c} \tanh\left(\frac{\bar{\gamma}l}{2}\right) \end{split}$$

Modelos aproximados para la línea de transmisión

Transformando las expresiones obtenidas para el π equivalente en:

$$\bar{Z}_{s} = \bar{Z}_{c} \operatorname{senh}(\bar{\gamma}I) = \sqrt{\frac{z}{y}} \operatorname{senh}(\bar{\gamma}I) = \bar{z}I \frac{\operatorname{senh}(\bar{\gamma}I)}{\bar{\gamma}I} = \bar{Z} \frac{\operatorname{senh}(\bar{\gamma}I)}{\bar{\gamma}I}$$
$$\bar{Y}_{p} = \frac{1}{\bar{Z}_{c}} \tanh\left(\frac{\bar{\gamma}I}{2}\right) = \frac{\bar{y}I}{\bar{\gamma}I} \tanh\left(\frac{\bar{\gamma}I}{2}\right) = \frac{\bar{Y}}{\frac{\gamma}{2}} \frac{\tanh\left(\frac{\bar{\gamma}I}{2}\right)}{\frac{\bar{\gamma}I}{2}}$$

Definiendo
$$\overline{Z} = \overline{z} \cdot I(\Omega)$$
 y $\overline{Y} = \overline{y} \cdot I/2(S)$

Como las funciones senh(x)/x y tanh(x)/x tienden ambas a 1 cuando $|x| \ll 1 \Rightarrow$

Potencia natural de la línea

■ Potencia natural ≜ potencia transportada por la línea cuando es terminada por \overline{Z}_c ■ $\overline{U}(I) = \overline{Z}_c \overline{I}(I)$

• La potencia transportada, la potencia natural, será: $\bar{S}_c = \frac{U(l)^2}{\bar{Z}^*}$

Tensiones	Aéreas $Z_c=350\Omega$	Subterráneas $Z_c = 40 \Omega$
(kV)	(MVA)	(MVA)
20	1,14	10
66	12,4	109
132	49,8	435
220	138	1 200
400	457	4 000

Potencias naturales típicas de líneas aéreas y subterráneas

• Para líneas ideales $\overline{Z}_c \in \Re$:

- Si $Z_{carga} < Z_c \Rightarrow$ la tensión va disminuyendo a lo largo de la línea
- Si $Z_{carga} = Z_c \Rightarrow$ el perfil de tensiones es plano
- Si $Z_{carga} > Z_c \Rightarrow$ la tensión va aumentando a lo largo de la línea (efecto ferranti)

Índice

1 Introducción

2 Modelo de la línea con parámetros distribuidos

3 Caída de tensión en líneas inductivas: fórmula exacta y aproximada

Caída de tensión en líneas inductivas: fórmula exacta y aproximada

Caída de tensión en una línea ≜ diferencia entre los módulos de la tensión a la entrada y a la salida

Para el caso del modelo de línea de longitud corta las caídas de tension son:
 Expresado con l y \varphi

• Exacta: $\Delta V = RI \cos \varphi + XI \sin \varphi + V_s - \sqrt{V_s^2 - (XI \cos \varphi - RI \sin \varphi)^2}$

Aproximada:
$$\Delta V = RI \cos \varphi + XI \sin \varphi$$

Expresado con P y Q

Exacta:
$$\Delta V = R \frac{P}{V_r} + X \frac{Q}{V_r} + V_s - \sqrt{V_s^2 - (X \frac{P}{V_r} - R \frac{Q}{V_r})^2}$$

- Aproximada: $\Delta V = R \frac{P}{V_r} + X \frac{Q}{V_r}$
- De tensión de línea: ΔV^{linea}

■
$$\Delta V^{linea} = \sqrt{3}\Delta V$$

■ Como $\frac{P}{V_r} = \frac{P^{tri}}{\sqrt{3}V_r^{linea}}$ y $\frac{Q}{V_r} \frac{Q^{tri}}{\sqrt{3}V_r^{linea}}$ \Rightarrow Aproximada: $\Delta V^{linea} = R \frac{P^{tri}}{V_r^{linea}} + X \frac{Q^{tri}}{V_r^{linea}}$
De circuito monofásico: $\Delta V^{mono} = 2\Delta V$

JAFM (Ingeniería Eléctrica UPCT)

Caída de tensión en líneas inductivas: justificación

