Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Escuela Técnica Superior de Ingeniería Industrial

Examen de Fundamentos Matemáticos de la Ingeniería Electrónica Industrial, Mañana

9 de Febrero de 2002

- 1. i) Definición de sistema libre. Demuestra que si $u, v \in V \setminus \{0\}$ son dos vectores ortogonales entonces $\{u, v\}$ es un sistema libre.
- ii) Enuncia el Teorema de Bolzano, el Teorema de los valores intermedios y demuestra éste a partir del primero.
- iii) Dada la función $f(x) = \frac{1}{x}$ y la partición $\mathcal{P} = \{1, 2, 3\}$ del intervalo [1, 3], calcula las sumas superiores e inferiores de f asociadas a dicha partición.

(1.5 puntos)

- **2.** Se considera $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + z = 0, \ 2x + y + z = 0\}$ y sea $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la proyección ortogonal de base S.
- i) Demuestra que la expresión analítica de f es $f(x,y,z)=(\frac{1}{3}x-\frac{1}{3}y-\frac{1}{3}z,\frac{-1}{3}x+\frac{1}{3}y+\frac{1}{3}z,\frac{1}{3}x+\frac{1}{3}y+\frac{1}{3}z)$. Calcula la matriz de f respecto de la base canónica de \mathbb{R}^3 .
- ii) Estudia la inyectividad y suprayectividad de f. Calcula bases del núcleo y la imagen de f.

Se considera la base de \mathbb{R}^3 $B = \{(1, -1, 1), (1, 0, 1), (2, 1, 1)\}.$

- iii) Calcula la matriz de f respecto de la base B.
- iv) Si $v = (1, 1, 2)_B$, calcula las coordenadas de f(v) respecto de la base B y respecto de la base canónica de \mathbb{R}^3 .
- \mathbf{v}) Sin realizar ningún cálculo, ¿Es f diagonalizable? En caso afirmativo da una base tal que la matriz de f en dicha base es diagonal y dicha matriz diagonal.

(2.5 puntos)

Consideremos la matriz

$$A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & -2 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

Calcula sus valores propios y subespacios propios asociados, estudia si es diagonalizable y en caso afirmativo calcula la matriz diagonal semejante y una matriz de paso.

(1.5 puntos)

4. Dada la función Booleana $f:K^3\longrightarrow K\mid f(x,y,z)=xz+(x+y')z',$ demuestra que su forma canónica disyuntiva es f(x,y,z) = xyz + xyz' + xy'z + xy'z' + x'y'z' y obtén a partir de ésta, usando el método de Quine-McCluskey, una expresión Booleana simplificada de dicha función Booleana.

(1 punto)

5. i) Calcula

$$\lim_{x \to 0} \frac{x^2 - \log^2(x+1)}{\cos^2 x - 1}$$

ii) Calcula el polinomio de Taylor de grado 3 de la función $f(x) = \sqrt[3]{x}$ en x = 8. Utiliza éste para aproximar $\sqrt[3]{7}$. Calcula la menor posible de las cotas de error cometido con tal aproximación usando la fórmula de Lagrange del error.

(1.5 puntos)

6. Calcula:

i) i)
$$\int_{-2}^{0} \frac{1}{\sqrt{x^2 + 2x + 2}} dx$$
.
ii) $\int \frac{x^3 - x + 20}{x^4 + 2x^3 - 2x^2 - 6x + 5} dx$.

ii)
$$\int \frac{x^3 - x + 20}{x^4 + 2x^3 - 2x^2 - 6x + 5} dx$$
.

(2 puntos)