Espacios vectoriales

Juan Medina Molina

21 de septiembre de 2005

Introducción

En este tema introducimos la estructura de espacio vectorial y analizamos sus propiedades.

Lo hemos dividido en los siguientes apartados:

- Espacios vectoriales. Definición y primeras propiedades.
- Subespacios vectoriales. Operaciones con susbespacios.
- Combinaciones Lineales. Sistemas Generadores. Independencia y dependencia lineal.
- Bases y dimensión.

Espacios vectoriales. Definición y primeras propiedades.

En primer lugar se introduce el concepto de espacio vectorial:

Definición 1 Sea (V, +) un grupo abeliano y $(K, +, \cdot)$ un cuerpo. Diremos que V es un K-espacio vectorial si existe una ley de composición externa $K \times V \longrightarrow V \mid (\alpha, \mathbf{v}) \longrightarrow \alpha \mathbf{v}$ verificando:

1.
$$\alpha(\mathbf{v} + \mathbf{w}) = \alpha \mathbf{v} + \alpha \mathbf{w}, \ \forall \alpha \in K, \ \forall \mathbf{v}, \mathbf{w} \in V.$$

2.
$$(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v}, \ \forall \alpha, \beta \in K, \ \forall \mathbf{v} \in V.$$

3.
$$(\alpha \cdot \beta)\mathbf{v} = \alpha(\beta\mathbf{v}), \forall \alpha, \beta \in K, \forall \mathbf{v} \in V.$$

$$4. 1\mathbf{v} = \mathbf{v}, \, \forall \mathbf{v} \in V.$$

Si~V~es~un~K-espacio vectorial, a los elementos de V~los~llamaremos~vectores y a los elementos de K~los~llamaremos~escalares.

Ejemplos.

- 1. El \mathbb{R} -espacio vectorial \mathbb{R}^n siendo $n \in \mathbb{N}$.
- 2. Si K es un cuerpo y $n \in \mathbb{N}$, el K-espacio vectorial K^n .
- 3. El \mathbb{R} -espacio vectorial $\mathbb{R}_n[x]$ de los polinomios con coeficientes reales y grado menor o igual que n, siendo $n \in \mathbb{N}$.
- 4. C como R-espacio vectorial y como C-espacio vectorial.
- 5. Presentamos un espacio vectorial un poco más complicado que los anteriores. Sea \mathcal{F} el conjunto de las aplicaciones $f: \mathbb{R} \longrightarrow \mathbb{R}$. Entonces, si $f, g \in \mathcal{F}$ se define:

$$f + g : \mathbb{R} \longrightarrow \mathbb{R} \mid (f + g)(x) = f(x) + g(x).$$

Entonces $(\mathcal{F}, +)$ es un grupo abeliano.

Si $\alpha \in \mathbb{R}$ y $f \in \mathcal{F}$ se define:

$$\alpha \cdot f : \mathbb{R} \longrightarrow \mathbb{R} \mid (\alpha \cdot f)(x) = \alpha \cdot f(x).$$

Entonces $(\mathcal{F}, +)$ es un \mathbb{R} -espacio vectorial.

Se obtienen las siguientes propiedades:

Proposición 1 Sea V un K-espacio vectorial. Entonces:

- i) $\alpha \mathbf{0} = \mathbf{0}$ para todo $\alpha \in K$.
- ii) $0\mathbf{v} = \mathbf{0}$ para todo $\mathbf{v} \in V$.
- iii) Si $\alpha \mathbf{v} = 0$ entonces $\alpha = 0$ ó $\mathbf{v} = \mathbf{0}$.
- iv) Si $\alpha \mathbf{v} = \beta \mathbf{v} \ y \ \mathbf{v} \neq \mathbf{0} \ entonces \ \alpha = \beta$.
- v) Si $\alpha \mathbf{v} = \alpha \mathbf{w}$ y $\alpha \neq 0$ entonces $\mathbf{v} = \mathbf{w}$.
- vi) $\alpha(-\mathbf{v}) = (-\alpha)\mathbf{v} = -(\alpha\mathbf{v})$ para todo $\alpha \in K$, para todo $\mathbf{v} \in V$.

Subespacios vectoriales

Definición 2 Sea V un K-espacio vectorial $y \not D \neq S \subseteq V$. Diremos que S es un subespacio vectorial de V si:

- i) S es un subgrupo de V.
- ii) Si $\lambda \in K$ y $\mathbf{v} \in S$ entonces $\lambda \mathbf{v} \in S$. (Así, tenemos una nueva ley de composición externa $K \times S \longrightarrow S$).

Entonces escribiremos $S \leq V$.

Si $S \leq V$ entonces se tiene que con las operaciones restringidas S es un K-espacio vectorial. Además, dado que S es un subgrupo de V, el elemento neutro $\mathbf{0}$ de V está en S (propiedad 4.7 del tema anterior). Así, una forma de descartar que un subconjunto de V no es un subespacio es viendo que $\mathbf{0} \notin S$.

Ejemplo. Todo K-espacio vectorial V tiene dos subespacios que son $\{0\}$ y V (uno en el caso de que $V = \{0\}$). Denotaremos por 0 el subespacio $\{0\}$.

Más operativa que la definición, es la siguiente caracterización de subespacio vectorial:

Proposición 2 Si S es un subconjunto de un espacio vectorial V, entonces son equivalentes:

- i) $S \leq V$.
- *ii)* $S \neq \emptyset$ $y \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in S \ \forall \alpha, \beta \in K, \ \forall \mathbf{x}, \mathbf{y} \in S.$

Por inducción se obtiene fácilmente:

Proposición 3 Si $S \leq V$, $\alpha_1, \ldots, \alpha_n \in K$ y $\mathbf{v_1}, \ldots, \mathbf{v_n} \in S$, entonces se obtiene que $\alpha_1 \cdot \mathbf{v_1} \ldots + \alpha_n \cdot \mathbf{v_n} \in S$.

Ejemplos.

- 1. $S = \{(x, y, z) \in \mathbb{R}^3 \mid x \cdot z = -1\} \subseteq \mathbb{R}^3$ no es un subespacio de \mathbb{R}^3 .
- **2.** $S = \{(x, y, z, u) \in \mathbb{R}^4 \mid x u = 0, \ 2x + y = 0\} \le \mathbb{R}^4.$

Pasamos a analizar algunas operaciones de subespacios.

Proposición 4 Si $S, T \leq V$, entonces $S \cap T \leq V$.

Nota. En general, la unión de subespacios no es subespacio.

Ejemplo Si $S = \{(x,y) \in \mathbb{R}^2 \mid y = 0\}$ y $T = \{(x,y) \in \mathbb{R}^2 \mid x = 0\}$, entonces $S \cup T$ no es un subespacio de \mathbb{R}^2 .

Si la unión de subespacios no es subespacio, ¿Cuál es el subconjunto más pequeño que contiene a la unión que sí es subespacio? Encontraremos pronto respuesta a esta pregunta.

Definición 3 Si $S, T \leq V$, se define la suma de S y T como

$$S + T = \{ \mathbf{v} + \mathbf{w} \mid \mathbf{v} \in S, \mathbf{w} \in T \}.$$

Proposición 5 $Si S, T \leq V$, entonces $S+T \leq V$ y es el "menor" subespacio que contiene a S y T en el sentido de que $si S \cup T \subseteq W \leq V$ entonces $S+T \subseteq W$.

Ejemplo

Si S y T son los subespacios del ejemplo anterior, entonces $S + T = \mathbb{R}^2$.

Definición 4 Dados $S, T \leq V$, diremos que S y T son suma directa o que S y T son subespacios independientes si $S \cap T = 0$. Entonces denotaremos su suma por $S \bigoplus T$.

Ejemplo

Los subespacios S y T de los ejemplos anteriores son subespacios independientes.

A continuación caracterizamos la definición anterior:

Proposición 6 Si $S, T \leq V$, son equivalentes:

- i) S y T son subespacios independientes.
- ii) Si $\mathbf{0} = \mathbf{x} + \mathbf{y} \ con \ \mathbf{x} \in S \ e \ \mathbf{y} \in T \ entonces \ \mathbf{x} = \mathbf{y} = \mathbf{0}$.
- iii) $Si \ \mathbf{u} \in S + T$ entonces \mathbf{u} se expresa de forma única como suma de un elemento de S y uno de T.

Definición 5 Si $S, T \leq V$, diremos que S y T son subespacios suplementarios en V si $S \bigoplus T = V$.

Ejemplo. Los subespacios S y T de los ejemplos anteriores son suplementarios en \mathbb{R}^2 .

Combinaciones Lineales. Sistemas Generadores. Independencia y dependencia lineal

Definición 6 Sea V un K-espacio vectorial y $L = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq V$. Dado $\mathbf{v} \in V$, diremos que \mathbf{v} es combinación lineal de L si existen $\alpha_1, \dots, \alpha_r \in K$ tal que $\mathbf{v} = \alpha_1 v_1 + \dots + \alpha_r v_r$.

Ejemplo.

En el \mathbb{R} -espacio vectorial \mathbb{R}^3 , consideramos $L = \{(1,1,0),(0,1,0)\}$. Entonces considerando los escalares 2,1 y -1,1 se obtiene los vectores (2,3,0) y (-1,0,0) que por lo tanto son combinación lineal de L. Se puede demostrar que el vector (-1/2,3,0) es combinación lineal de L y que (2,1,1) no lo es.

Dado que un conjunto finito de vectores no nulos no es subespacio vectorial, nos planteamos cuál es el menor subespacio que contiene a éstos. Observemos que ésta es la segunda vez que nos planteamos una pregunta de este estilo.

En Matemáticas, cuando un conjunto no satisface una propiedad nos solemos hacer dos preguntas:

- 1. ¿Cuál es el menor conjunto que lo contiene satisfaciendo dicha propiedad?
- 2. ¿Cuál es el mayor conjunto contenido en él satisfaciendo dicha propiedad?

Los conceptos de suma de subespacios y envoltura lineal (que introducimos a continuación) se obtienen de haberse planteado estas cuestiones. En el transcurso de esta asignatura, nos plantearemos estas cuestiones de nuevo para otros conceptos que introduciremos.

Definición 7 Dado $L = \{v_1, \ldots, v_r\} \subseteq V$, se define la envoltura lineal de L o el subespacio generado por L como $\langle L \rangle = \langle v_1, \ldots, v_r \rangle = \{\alpha_1 v_1 + \ldots + \alpha_r v_r \mid \alpha_1, \ldots, \alpha_r \in K\}$ (es el conjunto de todas las combinaciones lineales de L).

Proposición 7 Si $L = \{v_1, \ldots, v_r\} \subseteq V$, $L \leq V$ y es el "menor" subespacio de V que contiene a L (menor en el sentido de que si $L \subseteq W \leq V$, entonces $\langle L \rangle \subseteq W$).

Ahora damos la definición de sistema generador de un espacio vectorial:

Definición 8 Si V es un espacio vectorial y $L = \{\mathbf{v_1}, \dots \mathbf{v_r}\} \subseteq V$, se dice que L es un sistema generador de V si $\langle L \rangle = V$.

Observemos que un sistema generador de un subespacio nos determina dicho subespacio.

Nota

Si L es un subconjunto finito de V, entonces claramente L es un sistema generador de $\langle L \rangle$.

Ejemplos.

- 1. $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ es un sistema generador de \mathbb{R}^3 .
- **2.** $L = \{(1,1,0), (0,1,1), (1,0,1)\}$ es un sistema generador de \mathbb{R}^3 .
- 3. $L = \{(1,1,0), (1,0,0), (0,1,0)\}$ no es un sistema generador de \mathbb{R}^3 .

La siguiente importante propiedad nos dice cómo calcular un sistema generador de una suma de subspacios y por lo tanto, de como calcular la suma de éstos.

Proposición 8 Si $S, T \leq V$ y $L_1 = \{\mathbf{v_1}, \dots, \mathbf{v_r}\}$ y $L_2 = \{\mathbf{w_1}, \dots, \mathbf{w_s}\}$ son sistemas generadores de S y T respectivamente entonces $L_1 \cup L_2$ es un sistema generador de S + T.

Además se obtienen las siguientes propiedades:

Proposición 9 Si $L_1 = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq L_2 = \{\mathbf{v_1}, \dots, \mathbf{v_r}, \mathbf{v_{r+1}}, \dots, \mathbf{v_s}\} \subseteq V$ y L_1 es un sistema generador de V entonces L_2 es también sistema generador de V.

Proposición 10 Si $L_1 = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq V$ y $L_2 = \{\mathbf{w_1}, \dots, \mathbf{w_s}\} \subseteq V$, L_2 es un sistema generador de V y $\mathbf{w_i} \in \langle L_1 \rangle$, $1 \le i \le s$ entonces L_1 es también sistema generador de V.

Ahora damos la definición de espacios vectoriales finitamente generados.

Definición 9 Dado un K-espacio vectorial V, diremos que V es finitamente generado si posee un sistema generador finito.

Pasamos a introducir los conceptos relativos a independencia y dependencia lineal.

Definición 10 Si $L = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq V$, diremos que L es un sistema libre o que $\mathbf{v_1}, \dots, \mathbf{v_r}$ son linealmente independientes si se verifica que si $\alpha_1 \mathbf{v_1} + \dots + \alpha_r \mathbf{v_r} = 0$ entonces $\alpha_1, \dots, \alpha_r = 0$. En otro caso, diremos que L es un sistema ligado o que $\mathbf{v_1}, \dots, \mathbf{v_r}$ son linealmente dependientes.

Se obtienen las siguientes propiedades:

Propiedades 1 Sea $L_1 = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq \{\mathbf{v_1}, \dots, \mathbf{v_r}, \mathbf{v_{r+1}}, \dots, \mathbf{v_s}\} = L_2 \subseteq V$. Entonces:

- i) Si $\mathbf{v} \in V \setminus \{\mathbf{0}\}$, entonces $\{\mathbf{v}\}$ es un sistema libre.
- ii) Si $\mathbf{0} \in L_1$, entonces L_1 es un sistema ligado.
- iii) Si L_2 es un sistema libre, entonces L_1 es un sistema libre.
- iv) Si L_1 es un sistema ligado, entonces L_2 es un sistema ligado.
- v) Si L_1 es un sistema libre y \mathbf{x} no es combinación lineal de L_1 , entonces $L_1 \cup \{\mathbf{x}\}$ es un sistema libre.
- vi) Si $\mathbf{u}, \mathbf{v} \in V \setminus \{\mathbf{0}\}$ no son proporcionales, entonces \mathbf{u} y \mathbf{v} son linealmente independientes.

Además se obtiene el siguiente resultado:

Proposición 11 Si $L = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq V$, entonces:

L es un sistema ligado si y sólo si existe $i \in \{1, ..., r\}$ tal que $\mathbf{v_i}$ es combinación lineal de $\{\mathbf{v_1}, ..., \mathbf{v_{i-1}}, \mathbf{v_{i+1}}, ..., \mathbf{v_r}\}$.

Bases y dimensión

Definición 11 Dados L_1, L_2 subconjuntos finitos de V, diremos que L_1 y L_2 son equivalentes si $\langle L_1 \rangle = \langle L_2 \rangle$.

Ejemplo.

En \mathbb{R}^2 , los conjuntos $L_1 = \{(1,2)\}$ y $L_2 = \{(2,4)\}$ son equivalentes. Veamos formas de obtener sistemas equivalentes más sencillos de uno dado.

Proposición 12 Supongamos que V es un K-espacio vectorial y $L_1 = \{\mathbf{v_1} \dots, \mathbf{v_i}, \dots, \mathbf{v_j}, \dots, \mathbf{v_r}\}.$

- i) Si $\lambda \in K \setminus \{0\}$ y $L_2 = \{\mathbf{v_1}, \dots, \mathbf{v_i}, \dots, \mathbf{v_j}, \dots, \mathbf{v_r}\}$, entonces L_1 y L_2 son equivalentes.
- ii) Si $\lambda \in K$ y $L_2 = \{\mathbf{v_1}, \dots, \mathbf{v_i}, \dots, \lambda \mathbf{v_i} + \mathbf{v_j}, \dots, \mathbf{v_r}\}$, entonces L_1 y L_2 son equivalentes.

Llamaremos a las transformaciones de la proposición anterior operaciones elementales de un conjunto de vectores.

Definición 12 $Si V \neq 0$ es un K-espacio vectorial $y B = \{\mathbf{e_1}, \dots, \mathbf{e_n}\} \subseteq V$, se dice que B es una base de V si es un sistema libre y un sistema generador de V.

Si $B = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ es una base de V, entonces supondremos que $\mathbf{e_1}$ es el primer elemento de B, $\mathbf{e_2}$ es su segundo elemento de B, etc...

Ejemplos.

1. Si K es un cuerpo y $n \in \mathbb{N}^*$,

$$C = \{(1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)\}$$

es una base de K^n que llamaremos base canónica de K^n .

2. En el \mathbb{R} -espacio vectorial \mathbb{C} , $\{1,i\}$ es una base. Si consideramos ahora \mathbb{C} como \mathbb{C} -espacio vectorial entonces $\{1\}$ es una base (sería su base canónica).

Proposición 13 $Si B = \{\mathbf{e_1}, \dots, \mathbf{e_r}, \mathbf{e_{r+1}}, \dots, \mathbf{e_n}\}$ es un base de V entonces $V = \langle e_1, \dots, e_r \rangle \bigoplus \langle e_{r+1}, \dots, e_n \rangle$.

También se obtiene:

Proposición 14 Si $B = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ es una base de un espacio vectorial V y $\mathbf{x} \in V$, \mathbf{x} se expresa de forma única como combinación lineal de los elementos de V.

Definición 13 En las condiciones de la proposición anterior, si $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ tales que $\mathbf{x} = \alpha_1 \mathbf{e_1} + \alpha_2 \mathbf{e_2} + \ldots + \alpha_n \mathbf{e_n}$, diremos que $\alpha_1, \alpha_2, \ldots, \alpha_n$ son las coordenadas de \mathbf{x} respecto de la base B y escribiremos $\mathbf{x} = (\alpha_1, \alpha_2, \ldots, \alpha_n)_B$.

Ejemplos.

- **1.** En el K-espacio vectorial K^n , si C es su base canónica y $\mathbf{v} = (x_1, \ldots, x_n) \in K^n$, entonces $\mathbf{v} = (x_1, \ldots, x_n)_C$.
- **2.** $B = \{(1,1,1), (0,1,1), (0,0,1)\}$ es una base de \mathbb{R}^3 y $(2,1,-1) = (2,-1,1)_B$.

Con respecto a como se comportan las coordenadas al operar vectores, se obtiene:

Proposición 15 Si $B = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ es una base de un espacio vectorial $V, \alpha \in K$ $y \mathbf{x}, \mathbf{y} \in V$ tales que $\mathbf{x} = (\alpha_1, \alpha_2, \dots, \alpha_n)_B$ e $\mathbf{y} = (\beta_1, \beta_2, \dots, \beta_n)_B$ entonces $\mathbf{x} + \mathbf{y} = (\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_n + \beta_n)_B$ $y \alpha \mathbf{x} = (\alpha \alpha_1, \alpha \alpha_2, \dots, \alpha \alpha_n)_B$.

El siguiente resultado permite afirmar que ciertos conjuntos de vectores son sistemas libres sin tener que efectuar ningún cálculo:

Proposición 16 Sea $B = \{\mathbf{e_1}, \dots, \mathbf{e_n}\}$ una base de un K-espacio vectorial V. Sea $L = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq V$ tales que $\mathbf{v_i} = \sum_{j=1}^n \lambda_{ij} \mathbf{e_j}$ con $\lambda_{ij} = 0$ si i > j y $\lambda_{ii} \neq 0$ $1 \leq i \leq r$. Entonces L es un sistema libre.

A partir de este resultado se pueden obtener bases de un subespacio vectorial del siguiente modo:

- 1. Obtener las coordenadas de un sistema generador de dicho subespacio respecto de una base del espacio vectorial.
- 2. Escribir de arriba a abajo las *n*-tuplas correspondientes a dichos vectores de forma que los elementos de la diagonal sean distintos de 0.
- 3. Realizar operaciones elementales en dicha conjunto de vectores hasta obtener un sistema equivalente pero con los elementos de la diagonal distintos de 0 y debajo de la diagonal nulos.
- 4. Eliminar los vectores nulos.

Dado que el conjunto de vectores obtenido es equivalente al inicial, éste también es un sistema generador del subespacio y aplicando la propiedad anterior, sería un sistema libre y por lo tanto, una base del subespacio.

A continuación presentamos el siguiente importante resultado:

Teorema 1 Si $L_1 = \{\mathbf{v_1}, \dots, \mathbf{v_r}\} \subseteq L_2 = \{\mathbf{v_1}, \dots, \mathbf{v_r}, \mathbf{v_{r+1}}, \dots, \mathbf{v_s}\}$ son subconjuntos de un espacio vectorial V tales que L_1 es un sistema libre y L_2 es un sistema generador de V entonces existe una base B de V tal que $L_1 \subseteq B \subseteq L_2$.

A partir de este resultado se obtiene:

Proposición 17 Si $V \neq 0$ es un espacio vectorial finitamente generado:

- i) Todo sistema generador de V contiene una base de V.
- ii) V tiene bases.
- iii) Todo sistema libre está contenido en una base de V.

Teorema 2 Si V es un K-espacio vectorial finitamente generado, todas las bases de V tienen el mismo número de elementos.

A partir del resultado anterior se obtiene la siguiente definición:

Definición 14 La dimensión de un K-espacio vectorial $V \neq 0$, denotada por **dim** V es el número de elementos de una cualquiera de sus bases. Se define **dim** 0 = 0.

De la definición de dimensión y de las propiedades anteriores se obtiene:

Proposición 18 Sea V un espacio vectorial de dimensión n. Entonces:

- i) Todo conjunto finito de vectores con más de n elementos es ligado.
- ii) Todo sistema generador de V tiene al menos n elementos.
- iii) Si L es un subconjunto de n elementos de V entonces:
 - a) L es una base de V si y sólo si L es un sistema libre.
 - b) L es una base de V si y sólo si L es un sistema generador de V.
- iv) Si $U \leq V$ entonces U es finitamente generado.
- v) Si $U \leq V$, $U \neq V$ entonces dim $U < \dim V$.
- vi) Si B es una base de V y L es un sistema libre entonces existe $\tilde{B} \subseteq B$ tal que $L \cup \tilde{B}$ es una base de V.
- vii) Si $V = S \bigoplus T$, B_1 es base de S y B_2 es base de T entonces $B_1 \cup B_2$ es base de V.

Definición 15 Si V es un K-espacio vectorial y $L = \{v_1, \ldots, v_r\}$, se define el rango de L como $\operatorname{rg} L = \dim \langle v_1, \ldots, v_r \rangle$.

Proposición 19 Si V es un espacio vectorial finitamente generado y $U, W \le V$ entonces:

$$\dim (U+W) = \dim U + \dim W - \dim (U \cap W).$$

Bibliografía

- 1. R. Barbolla, P. Sanz, Álgebra Lineal y teoría de matrices. Ed. Prentice Hall.
- 2. J. Burgos, Curso de Álgebra y Geometría. Ed. Alhambra Longman.
- 3. J. S. Canovas, J. A. Murillo, Fundamentos Matemáticos de la Ingeniería. Ed. Diego Marín.

- 4. A. De la Villa, Problemas de Álgebra Lineal con esquemas teóricos. CLAGSA.
- 5. J. R. Torregrosa, C. Jordán, Álgebra Lineal y sus aplicaciones. Ed. McGraw-Hill.