Mathematics for Business I

$1^{\text {st }}$ G.A.D.E., Academic Year 2011/12

Control Unit 1, option B

\qquad

1. In \mathbb{R}^{3}, consider the vectors $\overrightarrow{u_{1}}=(-2,2,1), \overrightarrow{u_{2}}=\left(-1,1, \frac{1}{2}\right), \overrightarrow{u_{3}}=(0,-1,0), \overrightarrow{u_{4}}=$ $(3,3,3)\}$. Answer the next questions, explaining the reasoning you use for your answers.
a) Study if the vectors $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}, \overrightarrow{u_{4}}$ are linearly dependent or independent.
b) Study if the vectors $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}, \overrightarrow{u_{4}}$ are a generating system in \mathbb{R}^{3}.
c) Are the vectors $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}, \overrightarrow{u_{3}}, \overrightarrow{u_{4}}$ a basis in \mathbb{R}^{3} ? If not, use those vectors to build up a basis in \mathbb{R}^{3} (that is to say, using those vectors, add and/or drop some vectors to build up a basis in \mathbb{R}^{3}).
d) Let S be a vector subspace with basis $\left\{\overrightarrow{u_{1}}, \overrightarrow{u_{3}}\right\}$. Calculate $\operatorname{dim}(S)$, the equation(s) of S and another vector in S.
e) Let S be a vector subspace with basis $\left\{\overrightarrow{u_{3}}\right\}$. Calculate $\operatorname{dim}(S)$, the equation(s) of S and another vector in S.
2. Let's consider the maps
(1) $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ such as $f(x, y, z, t)=\left(x+2 y+3 t, \frac{1}{2} x-z-10\right)$
(2) $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ such as $f(x, y, z, t)=\left(x+2 y+3 t, \frac{1}{2} x-z\right)$.
a) Say which one is not a linear map and why it isn't.

For the map that it is linear, answer the next questions:
b) Calculate its associated matrix.
c) Calculate the image of the vector $\vec{u}=(1,-1,2,0)$.
d) Calculate one vector $\vec{v}=(x, y, z, t)$ verifying $f(\vec{v})=\overrightarrow{0}$

