Mathematics for Business I

1st G.A.D.E., Academic Year 2011/12

Control Unit 1, option B

- 1. In \mathbb{R}^3 , consider the vectors $\overrightarrow{u_1} = (-2, 2, 1), \overrightarrow{u_2} = (-1, 1, \frac{1}{2}), \overrightarrow{u_3} = (0, -1, 0), \overrightarrow{u_4} = (-1, 1, \frac{1}{2}), \overrightarrow{u_3} = (0, -1, 0), \overrightarrow{u_4} = (-1, 1, \frac{1}{2}), \overrightarrow{u_4} = (-1, 1, \frac{1}{2}),$ (3,3,3). Answer the next questions, explaining the reasoning you use for your answers.
 - a) Study if the vectors $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{u_4}$ are linearly dependent or independent.
 - b) Study if the vectors $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{u_4}$ are a generating system in \mathbb{R}^3 .
 - c) Are the vectors $\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}, \overrightarrow{u_4}$ a basis in \mathbb{R}^3 ? If not, use those vectors to build up a basis in \mathbb{R}^3 (that is to say, using those vectors, add and/or drop some vectors to build up a basis in \mathbb{R}^3).
 - d) Let S be a vector subspace with basis $\{\overrightarrow{u_1}, \overrightarrow{u_3}\}$. Calculate dim(S), the equation(s) of S and another vector in S.
 - e) Let S be a vector subspace with basis $\{\overrightarrow{u_3}\}$. Calculate dim(S), the equation(s) of S and another vector in S.
- 2. Let's consider the maps

 - (1) $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ such as $f(x, y, z, t) = (x + 2y + 3t, \frac{1}{2}x z 10)$ (2) $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ such as $f(x, y, z, t) = (x + 2y + 3t, \frac{1}{2}x z).$
 - a) Say which one is not a linear map and why it isn't.

For the map that it is linear, answer the next questions:

- b) Calculate its associated matrix.
- c) Calculate the image of the vector $\overrightarrow{u} = (1, -1, 2, 0)$.
- d) Calculate one vector $\overrightarrow{v} = (x, y, z, t)$ verifying $f(\overrightarrow{v}) = \overrightarrow{0}$