ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

Departamento de Métodos Cuantitativos e Informáticos

Relación de Problemas:

DISTRIBUCIONES BIDIMENDIONALES.

- 1.- Consideremos las siguientes observaciones de una variable estadística bidimensional (X,Y) donde
 - X = número de miembros de la unidad familiar.
 - Y = número de metros cuadrados de la vivienda.

Los resultados obtenidos de la observación de estas variables en un grupo de población han sido los siguientes:

- a) Tabular las observaciones.
- b) Obtener las distribuciones marginales de X y de Y.
- 2.- Supongamos que deseamos estudiar en un grupo de familias las variables Ingresos mensuales y Número de perceptores. Con este fin se han encuestado un total de 20 familias, obteniendo los siguientes resultados:

- a) Construir una tabla de doble entrada de tal forma que la variable Ingresos mensuales esté dividida en cinco intervalos de amplitud 100.000.
- b) Obtener las distribuciones marginales.
- c) Obtener la distribución de los Ingresos mensuales de las familias con un solo perceptor.
- 3.- Dada la siguiente distribución de frecuencias bidimensional:

X/Y	2	4	6
3	1	3	5
5	5	4	1
7	2	8	4
9	3	3	2

- a) Obtener las distribuciones marginales de ambas variables.
- b) Obtener las distribuciones condicionales de:

$$(X | Y=2) y (Y | X=7)$$

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

Departamento de Métodos Cuantitativos e Informáticos

Relación de Problemas:

DISTRIBUCIONES BIDIMENDIONALES.

4.- En una empresa se quieren estudiar conjuntamente las variables,: Número de horas extras realizadas por los trabajadores y edad de éstos. Para realizar este estudio de seleccionan una serie de individuos obteniendo los siguientes resultados:

X/Y	20 a 30	30 a 40	40 a 50	50 a 60
0 a 3	5	12	5	3
3 a 5	8	7	7	1
5 a 10	10	4	4	1
10 a 15	3	8	2	0

- a) Calcular el número medio de horas extras realizadas en la empresa.
- b) Calcular la varianza de la edad de los trabajadores.
- c) Calcular la covarianza.
- 5.- Dada la siguiente tabla de correlación:

Determinar "a" y "b" para que se verifique que $a_{01} = 0$ y $a_{02} = 10$

6.- Determinar los momentos a_{10} ; a_{20} ; a_{01} ; a_{02} ; a_{11} ; m_{11} de la siguiente distribución bidimensional:

X/Y	100	200	300
1	7	2	1
2	5	3	4

ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA

Departamento de Métodos Cuantitativos e Informáticos

Relación de Problemas:

DISTRIBUCIONES BIDIMENDIONALES.

7.- De las siguiente distribuciones bidimensionales decir cuál o cuáles son independientes:

8.- En una empresa dedicada a la producción de embalajes de cartón se quiere estudiar la dependencia entre las variables "número de obreros dedicados a la producción" y "número de embalajes realizados" las observaciones se han tabulado en la siguiente tabla:

	de 0 a 10	de 10 a 20	de 20 a 30
de 0 a 1000	50	30	3
de 1000 a 3000	20	70	30
de 3000 a 5000	5	20	80

- a) Calcular el número medio de embalajes que se realizan cuando el número de empleados oscila entre 10 y 20.
- b) Determinar si las variables en estudio son o no independientes.