

Variable Compleja & Transformadas (Matemáticas II) Departamento de Matemática Aplicada y Estadística

E.T.S. Ingeniería Industrial ▷ UPCT Grado en Ingeniería Electrónica Industrial y Automática

Ejercicios del tema 4

Integración en el plano complejo. Teorema del residuo y aplicaciones

- 1. Calcule las integrales $\int_{\gamma} f(z) dz$ en los siguientes casos:
 - (a) f(z) = Re(z); γ es la curva que definen los lados del triángulo de vértices $\{0, 1+i, 2\}$ con orientación positiva.
 - (b) $f(z) = \bar{z}$; γ es la semicircunferencia unidad que contiene a $\{1, i, -1\}$ con orientación negativa.
 - (c) $f(z) = \bar{z}|z|$; γ es la semicircunferencia unidad que contiene a $\{1, i, -1\}$ con orientación positiva.
 - (d) $f(z) = \frac{z}{\overline{z}}$; γ es la curva representada en la Figura 1.

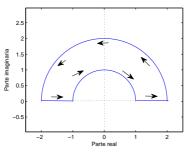


Figura 1

(e) $f(z) = z^4$; γ es la curva representada en la Figura 2, que une los puntos $z_0 = -P + 0i$ y $z_1 = P + 0i$, $P = 8\pi$.

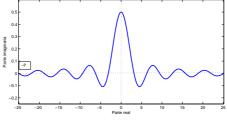


Figura 2

(f)
$$f(z) = z \exp(z); \quad \gamma(t) = t^2 + it, t \in [0, \frac{4}{3}].$$

2. Calcule las siguientes integrales:

(a)
$$\int_{\gamma} \frac{\operatorname{sen}(\exp(z))}{z} \, dz; \quad \gamma(t) = \exp(it), t \in [0, 2\pi].$$

(b)
$$\int_{\gamma} \frac{\exp(1/z)}{(z-1)^2} dz$$
; $\gamma(t) = 1 + \frac{\exp(it)}{2}$, $t \in [0, 2\pi]$.

(c)
$$\int_{\gamma} \frac{z \exp(z)}{(z-i)^3} dz$$
; $\gamma(t) = i + \exp(it), t \in [0, 2\pi]$.

- 3. Calcule la integral $\int_{\gamma} \frac{\exp(z)}{z(1-z)^2} dz$, en los siguientes casos:
 - (a) $\gamma(t) = r \exp(it), t \in [0, 2\pi], 0 < r < 1.$
 - (b) $\gamma(t) = 1 + r \exp(it), t \in [0, 2\pi], 0 < r < 1.$
 - (c) $\gamma(t) = r \exp(it), t \in [0, 2\pi], r > 1.$
- 4. Calcule la integral $\int_{\gamma} \frac{1}{z^2 + 9} dz$, en los siguientes casos:
 - (a) $\gamma(t) = 3i + \exp(it), t \in [0, 2\pi].$
 - (b) $\gamma(t) = -2i + 2\exp(it), t \in [0, 2\pi].$
 - (c) $\gamma(t) = 4\exp(it), t \in [0, 2\pi].$
 - (d) $\gamma(t) = \exp(it), t \in [0, 2\pi].$
- 5. Se considera γ la elipse de semiejes a,b>0 y de ecuación cartesiana $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$.
 - (a) Compruebe que

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z = 2\pi i. \tag{1}$$

(b) Utilice (1) para demostrar que

$$\int_0^{2\pi} \frac{1}{a^2 \cos^2(t) + b^2 \sin^2(t)} dt = \frac{2\pi}{ab}.$$

6. Calcule las siguientes integrales:

(a)
$$\int_{\gamma} \frac{z-2}{32z^3 - 4z^2 - z} dz$$
; $\gamma(t) = i + r \exp(it), t \in [0, 2\pi]$.

(b)
$$\int_{\gamma} \frac{1}{1-z^4} dz$$
; $\gamma(t) = \frac{3}{2} \exp(it), t \in [0, 2\pi].$

(c)
$$\int_{\gamma} \frac{1}{\cos(z)} dz; \quad \gamma(t) = 5 \exp(it), t \in [0, 2\pi].$$

(d)
$$\int_{\gamma} \left(\frac{\exp(z)}{(z-1)^3} + z^9 \sin\left(\frac{1}{z^2}\right) \right) dz; \quad \gamma(t) = 2 \exp(it), t \in [0, 2\pi].$$

7. Calcule las siguientes integrales de variable real aplicando el Teorema de los residuos:

(a)
$$\int_0^{2\pi} \frac{1}{2 + \cos(t)} dt$$
.

(b)
$$\int_0^{2\pi} \frac{\cos(3t)}{5 - 4\cos(t)} dt.$$

(c)
$$\int_0^{2\pi} \frac{1}{(5-3\sin(t))^2} dt$$
.

8. Se considera la curva γ igual a la circunferencia de centro 0+0i y radio 2. Se define la función de variable real

$$\begin{split} g:(0,+\infty) &\mapsto &\mathbb{C} \\ t &\mapsto &g(t) = \frac{1}{2\pi i} \int_{\gamma} \frac{\exp(zt)}{z^2(z^2+1)} \,\mathrm{d}z. \end{split}$$

- (a) Calcule la expresión de g(t).
- (b) Compruebe que $\lim_{t\to 0} g(t) = 0$.
- 9. Se considera la curva γ igual a la circunferencia de centro 0 + 0i y radio 2. Aplicando el Teorema de los residuos, calcule la expresión de las siguientes funciones de variable real:

(a)
$$g(t) = \frac{1}{2\pi i} \int_{\gamma} \frac{\exp(zt)}{z-2} dz$$
.

(b)
$$g(t) = \frac{1}{2\pi i} \int_{\gamma} \frac{\exp(zt)}{(z+1)^2} dz$$
.