BLOQUE II. Introducción a la Transmisión de Información

PRINCIPIOS DE CODIFICACIÓN.

DETECCIÓN Y CORRECCIÓN DE ERRORES.

TIPOS Y CARACTERÍSTICAS DE LAS SEÑALES.

María Dolores Cano Baños

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

- 5. Modalidades de transmisión
 - 1. Transmisión serie paralelo
 - 2. Simultaneidad Emisión-Recepción
 - 3. Transmisión asíncrona y síncrona
 - 4. Transmisión digital y analógica
- 6. Técnicas de modulación
- Perturbaciones en la transmisión
- 8. Consideraciones adicionales

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

1. Representación de la información

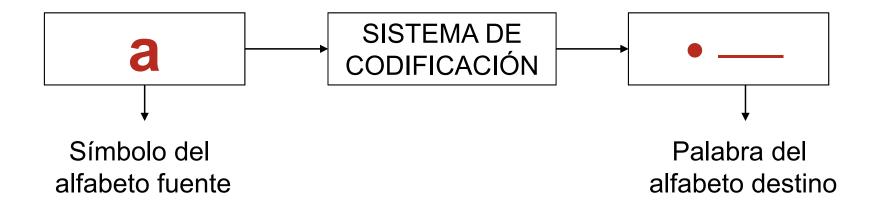
- Compatibilidad con los equipos terminales de datos encargados de su transmisión
- Los primeros ordenadores que se fabricaron utilizaban válvulas de vacío
 - Sólo dos estados posibles ON y OFF (sistema binario con símbolos 0 y 1)
- El bit es la mínima unidad de información comprensible por un ordenador.
 - Bit ⇒ BInary digiT
 - Otras unidades: byte, Kbyte, Mbyte.

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

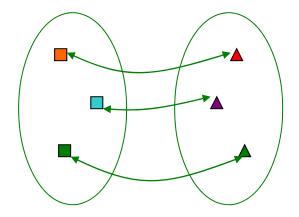
OBJETIVO DE LA CODIFICACIÓN

Adaptar la información al medio de transmisión elegido, ahorrando ancho de banda y garantizando una recepción adecuada y segura.

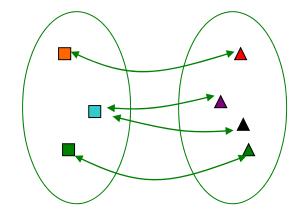
- □ Ahorrar ancho de banda, reduciendo el tamaño
- Simplificar la sincronización entre emisor y receptor
- Dotar de inmunidad frente al ruido y las interferencias a las señales transmitidas


DEFINICIÓN DE CODIFICACIÓN

Transformación de la información de un determinado alfabeto fuente en otro alfabeto destino.

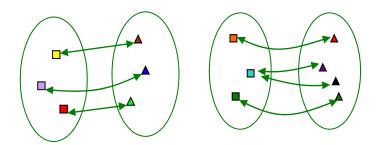

DEFINICIÓN DE CÓDIGO

Correspondencia entre cada símbolo del alfabeto fuente y cada conjunto de símbolos o palabras del alfabeto destino.

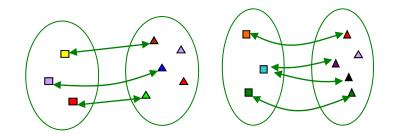

□ La correspondencia entre alfabeto fuente y alfabeto destino puede ser:

Biunívoca

 Relación uno a uno entre un elemento del alfabeto fuente y uno del alfabeto destino


NO Biunívoca

- Relación uno a más de uno entre un elemento del alfabeto fuente y el alfabeto destino


□ La correspondencia entre alfabeto fuente y alfabeto destino puede ser:

Recíproca

 Cada palabra del alfabeto destino tiene correspondencia con un símbolo del alfabeto fuente

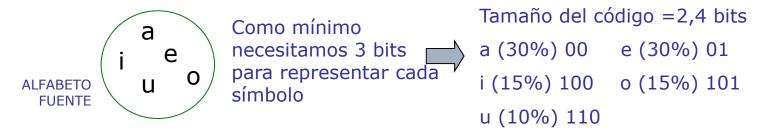
NO Reciproca

 Hay palabras del alfabeto destino que no tienen correspondencia con un símbolo del alfabeto fuente

☐ Ejemplo:

- En una partida de mus (baraja de cartas española) en la que participan dos parejas, A y B, la pareja A inventa un código para poder comunicarse sin que lo perciba la pareja B El código funciona de la siguiente forma:
 - i) si un miembro de la pareja se toca la nariz, significa que tiene un rey,
 - ii) si un miembro de la pareja saca la lengua, significa que tiene un as,
 - iii) si un miembro de la pareja guiña un ojo, significa que tiene o tiene duples o tiene medias (cualquiera de las dos opciones).

¿Qué característica presenta este código respecto a la biunicidad y la reciprocidad?


- □ A la hora de codificar suelen ocurrir dos cosas:
 - Se utilizan más bits de los estrictamente necesarios para facilitar la detección de errores ⇒ **Redundancia**
 - Hay más símbolos o palabras del alfabeto destino de las necesarias, a las que se asignan ciertas funciones de control ⇒
 No reciprocidad

Tamaño del código ≡ Conjunto de símbolos que configuran las palabras del alfabeto destino

Si la codificación es binaria ⇒ el tamaño del código es el número de bits necesarios para representar un símbolo del alfabeto fuente.

- No siempre, todas las palabras del alfabeto destino se representan con la misma duración
 - □ Ejemplo:

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

- □ **Código ASCII** (American Standar Code for Information Interchange)
 - 1963, Comité Estadounidense de Estándares
 - Código de 7 bits \Rightarrow 128 caracteres diferentes
 - ☐ Letras: mayúsculas y minúsculas
 - ☐ Cifras
 - ☐ Signos de puntuación
 - ☐ Caracteres de control: BEL, ACK, ...
 - Existen versiones extendidas de 8 bits, que dependen del fabricante y del país
 - Por ejemplo, la versión para España (ISO 8859-1) incluye las letras "ñ" y "Ñ"
 - Define códigos para 33 caracteres no imprimibles (caracteres de control) y 95 imprimibles (comenzando por el espacio)

□ Código ASCII

Binario	Decimal	Hex	Abreviatura	Repr	AT	Nombre/Significado	
0000 0000	0	00 NUL NU. ^@		Caracter Nulo			
0000 0001	1	01	SOH	50×	^A	Inicio de Encabezado	
0000 0010	2	02	STX	STX	^B	Inicio de Texto	
0000 0011	3	03	ETX	ETX	^C	Fin de Texto	
0000 0100	4	04	EOT	E0T	^D	Fin de Transmisión	
0000 0101	5	05	ENQ	guq	^E	Enquiry	
0000 0110	6	06	ACK	ACK	^F	Adknowledgement	
0000 0111	7	07	BEL	EEL	^G	Timbre	
0000 1000	8	08	BS	ES	ήн.	Retroceso	
0000 1001	9	09	нт	нт	4	Tabulación horizontal	
0000 1010	10	0A	LF	LE	N	Line feed	
0000 1011	11	0B	VT	¥Τ	4K	Tabulación Vertical	
0000 1100	12	0C	FF	EE	^L	Form feed	
0000 1101	13	OD	CR	CR	^M	Carriage return	
0000 1110	14	0E	so	50	N	Shift Out	
0000 1111	15	0F	SI	51	10	Shift In	
00010000	16	10	DLE	210	^P	Data Link Escape	
00010001	17	11	DC1	802	^Q	Device Control 1 — oft XON	
00010010	18	12	DC2	ocz	^R	Device Control 2	
00010011	19	13	DC3	ocs	^S	Device Control 3 — oft XOFF	
00010100	20	14	DC4	004	^T	Device Control 4	
00010101	21	15	NAK	NAK	^ U	Negative Adknowledgement	
00010110	22	16	SYN	SYN	^ V	Synchronous Idle	
00010111	23	17	ETB	ETE	^W	End of Trans. Block	
0001 1000	24	18	CAN	CAN	* X	Canoel	
0001 1001	25	19	EM	EH	^Y	End of Medium	
0001 1010	26	1A	SUB	SLE	^Z	Substitute	
0001 1011	27	18	ESC	ESC	1 or ESC	Escape	
0001 1100	28	1C	FS	FS	^	File Separator	
0001 1101	29	1D	GS	cs	7	Group Separator	
00011110	30	1E	RS	es	M	Record Separator	
00011111	31	1F	US	us	^_	Unit Separator	
0111 1111	127	7F	DEL	oe.	^?, Delete, or Backspace	Delete	

Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación
0010 0000	32	20	espacio ()	0100 0000	64	40	@	0110 0000	96	60	*
0010 0001	33	21	1	0100 0001	65	41	А	0110 0001	97	61	a
0010 0010	34	22		0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	s	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	E	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f.
0010 0111	39	27		0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0010 1010	42	2A		0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	κ	0110 1011	107	6B	k
0010 1100	44	2C		0100 1100	76	4C	L	0110 1100	108	6C	Ţ
0010 1101	45	2D	-	0100 1101	77	4D	М	0110 1101	109	6D	m
0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	s
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	V	0111 0110	118	76	v
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	w
0011 1000	56	38	8	0101 1000	88	58	x	0111 1000	120	78	x
0011 1001	57	39	9	0101 1001	89	59	Y	0111 1001	121	79	У
0011 1010	58	3A	:	0101 1010	90	5A	z	0111 1010	122	7A	z
0011 1011	59	3B		0101 1011	91	5B	1	0111 1011	123	7B	{
0011 1100	60	3C	<	0101 1100	92	5C	1	0111 1100	124	7C	Ī
0011 1101	61	3D	-	0101 1101	93	5D	1	0111 1101	125	7D	}
0011 1110	62	3E	>	0101 1110	94	5E	A.	0111 1110	126	7E	~
0011 1111	63	3F	?	0101 1111	95	5F	_:				

- ☐ **Código EBCDIC** (*Extended Binary Code Decimal Interchange Code*)
 - Desarrollado por IBM
 - Es un código de 8 bits, en el que algunos de los caracteres son de libre asignación
 - Incluye más caracteres de control que ASCII
 - □ 0000 0000 a 0011 1111 reservado para caracteres de control
 - □ 0100 0000 a 0111 1111 reservado para signos de puntuación
 - □ 1000 0000 a 1011 1111 reservado para minúsculas
 - □ 1100 0000 a 1111 1111 reservado para mayúsculas y números
 - IBM mantuvo su uso en mainframes porque era un código fácil de usar en tarjetas perforadas

□ Código EBCDIC

- Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

- □ En un medio real existe cierta probabilidad de que se produzcan errores:
 - Interferencias electromagnéticas
 - Deterioro y mal funcionamiento de los equipos de comunicaciones
- En una transmisión digital, un error significa un cambio en el valor de uno o más bits

 $Arr P_b \Rightarrow$ Para obtener una medida de la calidad de un canal, se puede estudiar cual es su tasa de error binaria \Rightarrow **BER** (*Bit Error Rate*)

$$BER = \frac{n^{\circ} \ bits \ err\'oneos \ recibidos}{n^{\circ} \ bits \ transmitidos}$$

□ Puesto que los errores existen, se admiten valores reales de BER → necesario incluir dispositivos y métodos capaces de detectar e incluso corregir errores

■ Métodos para la detección y corrección de errores:

No hacer nada

Petición automática de retransmisión ≡ **ARQ** (Automatic Retransmision Query)

Corrección avanzada de errores ≡ **FEC** (*Forward Error Correction*)

- □ Lo más común es tener ARQ + FEC
 - Se reduce, a una cifra razonable, el número de retransmisiones pedidas
 - Sin necesidad de un sistema de corrección de errores excesivamente complejo
 - Se garantiza la integridad de los datos

P_b: Probabilidad de que un bit se reciba de forma errónea (BER)

P₁: Probabilidad de que una trama llegue si errores

P₂: Probabilidad de que una trama llegue con uno o más errores no detectados

P₃: Probabilidad de que una trama llegue con uno o más errores detectados (ninguno no detectado)

- Si no se hace nada (probabilidad de que un bit llegue erróneo es P_b e independiente para cada bit):
 - $P_1 = (1-P_b)^F; P_2 = 1-P_1; P_3 = 0;$
 - La probabilidad de que una trama llegue sin errores decrece conforme aumenta P_b
 - Cuanto mayor es la longitud de la trama más probabilidad de que llegue errónea

☐ Ejemplo:

- RDSI, BER<10⁻⁶ en un canal de 64kbps en el 90% de los intervalos de 1 minutos observados
- Suponemos que, por día, llega una trama con un bit erróneo no detectado en un canal de 64kbps
- Suponemos tramas de 1000 bits

Según el enunciado

- \rightarrow Tramas por día= 24 * 3600 * 64000 / 1000 = 5,5296·10⁶ tramas
- \rightarrow P_{trama con un bit erróneo no detectado} = P₂ = 1/5,5296·106 = **0,181·10**-6

Si no se aplica ninguna técnica de detección de errores

- → Si $P_b = 10^{-6}$ entonces $P_1 = (1-P_b)^F = (1-10^{-6})^{1000} = 0,999$
- → y entonces $P_2 = 1 P_1 = 10^{-3}$
- → Tasa de no detección de errores es demasiado alta para cumplir requisitos ⇒ necesario técnicas detección de errores

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

- □ Permiten la detección de errores en recepción
- ☐ Idea:
 - Dada una trama de bits, el transmisor calculará una serie de bits adicionales a partir de los bits de dicha trama
 - El resultado se añade a la transmisión
 - El receptor, por su parte, realizará la misma operación y comparará los resultados
 - Se detectará la presencia de bits erróneos cuando los resultados no coincidan

- Los códigos de control de paridad
 - Añaden un bit adicional a cada carácter que se transmite,
 llamado bit de paridad
 - Dicho bit de paridad se escoge de modo que el número total de bits 1 (incluido el de paridad) sea
 - □ par ⇒ paridad par
 - Los errores se pueden detectar pero no se pueden corregir

PARIDAD PAR

101011**B**_P

¿Cuántos unos tengo? $4 \rightarrow el$ bit de paridad será cero para que el número total de unos siga siendo par $\rightarrow B_P=0$

101011**0**

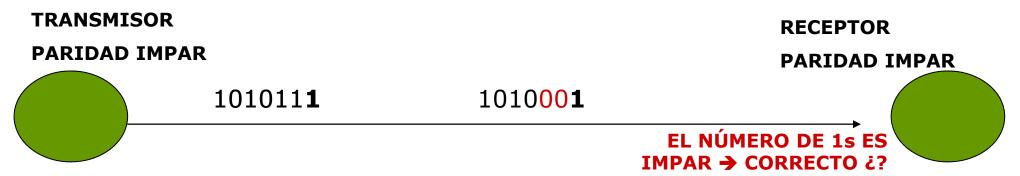
PARIDAD IMPAR

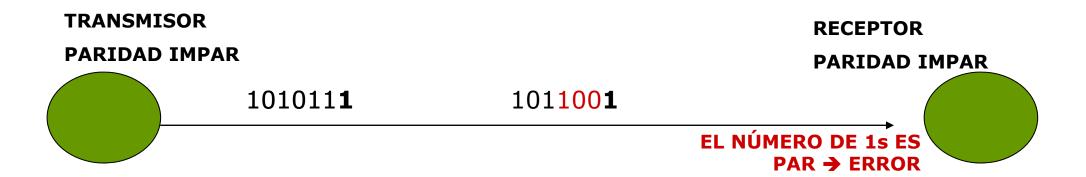
101011**B**_P

¿Cuántos unos tengo? 4 \rightarrow el bit de paridad será uno para que el número total de unos sea impar \rightarrow $B_p=1$

101011**1**

TRANSMISOR PARIDAD IMPAR

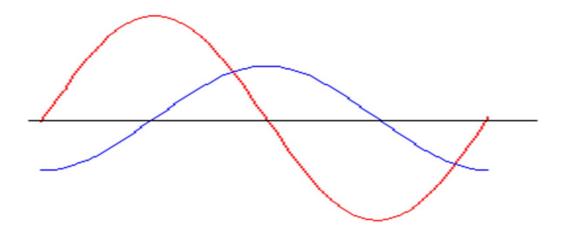

101011**1**


10**0**011**1**

RECEPTOR
PARIDAD IMPAR

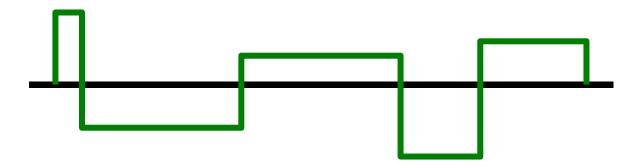
EL NÚMERO DE 1s ES PAR → ERROR

☐ El código de control de paridad permite detectar errores de bit individuales (o un número impar de errores) pero no detecta un cambio par de bits



- Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

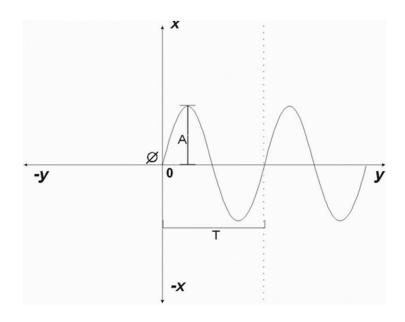
Continuas y discretas

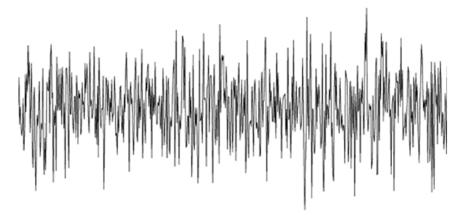

■ Una señal es <u>continua</u> si cumple que: $\lim_{t\to a} S(t) = S(a) \forall a$

 No hay discontinuidades, la señal varía suavemente con el tiempo (p.e., voz)

Continuas y discretas

 Un señal <u>discreta</u> es aquella en la que la intensidad se mantiene constante durante un tiempo, tras el cual la señal cambia, de forma abrupta, a otro valor constante (p.e., señal binaria)


Periódicas y aperiódicas


Una señal <u>periódica</u> es aquella que repite un patrón en el tiempo y por tanto cumple que:

$$S(t+T) = s(t) -\infty < t < +\infty$$

 T (periodo de la señal)
 es el menor periodo que cumple la condición

Velocidad de transmisión

- La velocidad de transmisión mide el número de bits transmitidos por un canal, por unidad de tiempo
- Si la unidad de tiempo es el segundo la velocidad de transmisión se expresa en **bps** (bits por segundo)
- La velocidad de transmisión, es por tanto, la tasa binaria

Ancho de banda

- Desde el punto de vista de la señal ⇒ el ancho de banda es el rango de frecuencias en el que está contenida la mayor parte de la energía de la señal
- Desde el punto de vista del canal ⇒ el ancho de banda es el rango de frecuencias que es capaz de soportar el sistema sin causar una distorsión apreciable a la señal transmitida, para la calidad de servicio establecida
- Su unidad son los Hertzios (Hz)

RELACIÓN ENTRE ANCHO DE BANDA Y VELOCIDAD DE TRANSMISIÓN

La velocidad a la que se puede transmitir en un canal no puede ser tan grande como queramos

Existe un máximo impuesto por el ancho de banda del canal por el que se transmite

RELACIÓN ENTRE ANCHO DE BANDA Y VELOCIDAD DE TRANSMISIÓN

EXPRESIÓN PARA UN *CANAL I DEAL (SIN RUIDO)*Nyquist (1924)

$$C(bps) = 2 \cdot W(Hz) \cdot \log_2 M$$

C: es la capacidad o la máxima velocidad de transmisión del canal

W: es el ancho de banda del canal

M: el número de niveles de tensión o número de señales discretas (si la señal es binaria, el nº de estados posibles sería 2 (0 y 1; +V, -V)

RELACIÓN ENTRE ANCHO DE BANDA Y VELOCIDAD DE TRANSMISIÓN

EXPRESIÓN PARA UN CANAL CON RUIDO BLANCO GAUSSIANO

Shannon (1948)

$$C(bps) = W(Hz) \cdot \log_2(1 + S/N)$$

C: es la capacidad o la máxima velocidad de transmisión del canal

W: es el ancho de banda del canal

S/N: es la relación entre la potencia de señal recibida y la potencia de ruido

RELACIÓN ENTRE ANCHO DE BANDA Y VELOCIDAD DE TRANSMISIÓN

NYQUIST:
$$C(bps) = 2 \cdot W(Hz) \cdot \log_2 M$$

SHANNON:
$$C(bps) = W(Hz) \cdot \log_2(1 + S/N)$$

Podemos decir que cuanto mayor sea el ancho de banda del canal, mayor podrá ser la velocidad de transmisión

RELACIÓN ENTRE ANCHO DE BANDA Y VELOCIDAD DE TRANSMISIÓN

☐ Ejemplo:

- Suponga un medio de transmisión con un ancho de banda de 1MHz y una relación S/N_{dB}=24 dB
- $S/N_{dB} = 24 \text{ dB} = 10 \log_{10} (S/N) \rightarrow S/N \approx 251$
- $C_{Shannon} = 1MHz \cdot log_2(1+251) \approx 8 Mbps$
- Si esta fuera la capacidad del canal, ¿cuántos niveles necesitamos según Nyquist?

$$C_{Nyquist} = 8 \text{ Mbps} = 2 \cdot 1 \text{MHz} \cdot \log_2 M \rightarrow \log_2 M = 4$$

 $M = 16$

□ **Dato:** se define como una entidad que transporta información

Datos analógicos

□ Toman valores en un intervalo continuo (voz, vídeo)

Datos digitales

□ Toman valores en un conjunto discreto (texto, números enteros) que son susceptibles de ser codificados con números binarios

■ Señal: se define como la codificación eléctrica o magnética de los datos

SEÑALES ANALÓGICAS

Se representan por funciones continuas en el tiempo

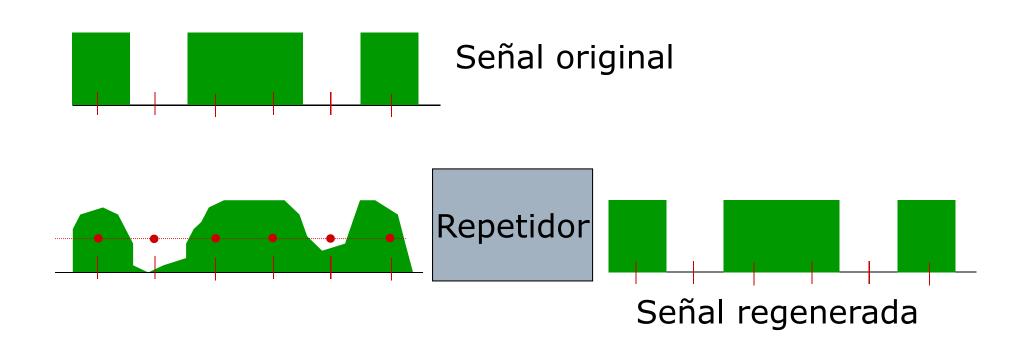
<u>Problema</u>: Atenuación con la distancia.

Solución: Intercalar amplificadores entre emisor y receptor. Estos amplificadores no sólo amplifican la señal, también amplifican el ruido. Por tanto, cuanto mayor sea la longitud del enlace, peor será la calidad en recepción.

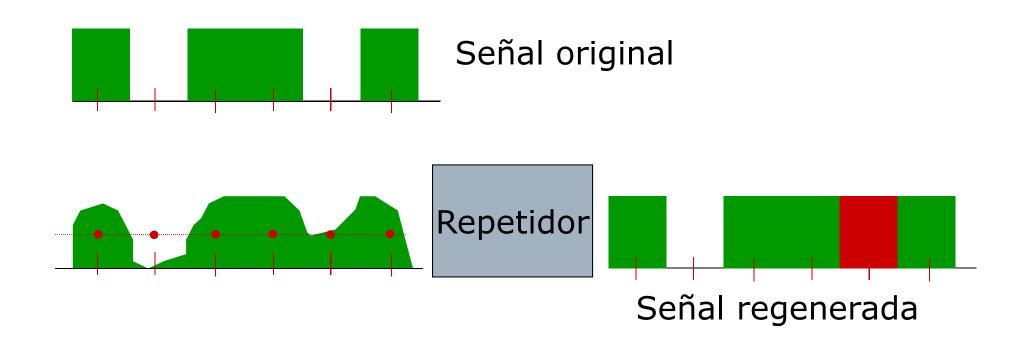
<u>Calidad del enlace</u>: Medida de la relación señal a ruido en recepción.

SEÑALES DIGITALES

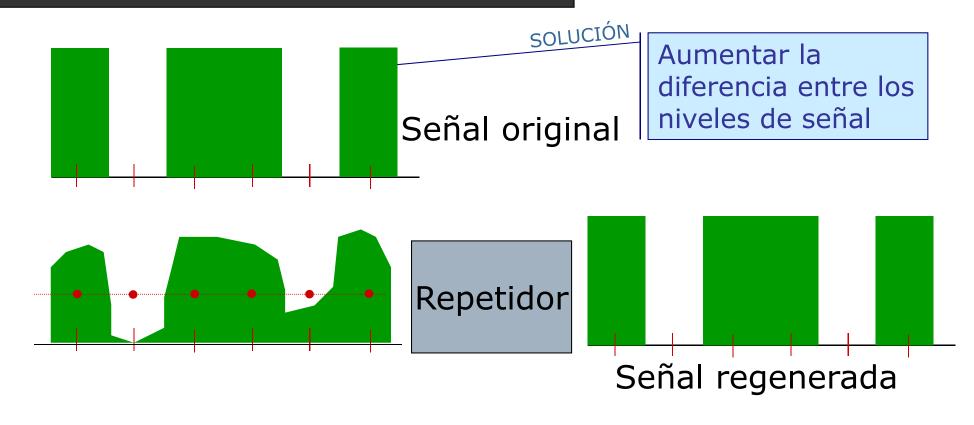
Sólo toman **valores discretos**. Se utilizan repetidores → eliminan problema de pérdida de calidad con la distancia


Un repetidor regenera la señal y elimina el ruido en cada salto ⇒ líneas de transmisión de longitud infinita.

<u>Problema</u>: Repetidor se podría equivocar al regenerar ⇒ secuencia de salida distinta a la de entrada.


<u>Solución</u>: Cuanto mayor sea la separación de amplitudes entre niveles de señal menor será la probabilidad, pero mayor consumo de potencia.

Calidad del enlace: Tasa de error de bit.


SEÑALES DIGITALES

SEÑALES DIGITALES

SEÑALES DIGITALES

	Teléfono	Módem	CODEC	TxDigital
Datos	Analógicos	Digitales	Analógico	Digitales
Señales	Analógicas	Analógicas	Digitales	Digitales

- La transmisión digital se ha impuesto a la transmisión analógica:
 - El uso de tecnologías LSI y VLSI (integración de componentes a gran escala) ⇒ disminución continua tanto en coste como en tamaño (consumo de potencia) de la circuitería digital
 - Un uso más eficiente del ancho de banda de las líneas de gran capacidad (FO, satélite), ya que la multiplexación digital (TDM) es más sencilla y de menor coste que la multiplexación analógica (FDM)
 - Toda la información, una vez digitalizada, se puede procesar de forma similar: voz, vídeo y datos
 - Integridad de los datos: Con el uso de repetidores en vez de amplificadores los efectos del ruido y otras perturbaciones no son acumulativos ⇒ permitiendo cubrir mayores distancias
 - Seguridad y privacidad: La digitalización de la información facilita el cifrado

Resumen

- ☐ Codificación: Transformación de la información de un determinado alfabeto fuente en otro alfabeto destino
- ☐ Código: correspondencia entre palabra del alfabeto fuente y conjunto de símbolos/palabras de alfabeto destino
 - Biunicidad, reciprocidad, redundancia y tamaño del código
- □ Detección/corrección de errores:
 - ARQ, FEC
 - Control de paridad (par, impar)
- □ Velocidad de transmisión: nº bits transmitidos por un canal, por u.d.t.
- Ancho de banda
 - Canal: rango de frecuencias que es capaz de soportar el sistema sin causar una distorsión apreciable a la señal transmitida
 - Señal: rango de frecuencias en el que está contenida la mayor parte de la energía de la señal
- □ Señales analógicas y digitales

$$BER = \frac{n^{\circ} \ bits \ err\'oneos \ recibidos}{n^{\circ} \ bits \ transmitidos}$$

NYQUIST: $C(bps) = 2 \cdot W(Hz) \cdot \log_2 M$

SHANNON: $C(bps) = W(Hz) \cdot \log_2(1 + S/N)$

Próximo día

- 1. Representación de la información
- 2. Principios de codificación
 - 1. Códigos para datos alfanuméricos más usuales
- 3. Detección y corrección de errores
 - 1. Control de paridad
- 4. Tipos y características de las señales

Próximo día

5. Modalidades de transmisión

- 1. Transmisión serie paralelo
- 2. Simultaneidad Emisión-Recepción
- 3. Transmisión asíncrona y síncrona
- 4. Transmisión digital y analógica
- 6. Técnicas de modulación
- Perturbaciones en la transmisión
- 8. Consideraciones adicionales