RELACIÓN DE PROBLEMAS. ARQUITECTURA TÉCNICA. 2003-2004

1. Discute $\lim_{x\to\pm\infty} f(x)$ y $\lim_{x\to 0} f(x)$ para

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

con $a_n, b_m \neq 0$ y $n, m \in \mathbb{N}$, en los siguientes casos:

a)
$$n > m > 0$$
 b) $0 < n < m$ c) $n = m > 0$

2. Calcula $\lim_{x\to\pm\infty} |x|^{\alpha}a^x$ y $\lim_{x\to0} |x|^{\alpha}a^x$, por L'Hôpital, en los siguientes casos:

$$\begin{array}{ll} a) \ \alpha = -1/2, a = 1/2 & b) \ \alpha = -3/2, a = 1/3 & c) \ \alpha = 1/2, a = 1/4 & d) \ \alpha = 2, a = 1/5 \\ e) \ \alpha = -1/2, a = 2 & f) \ \alpha = -3/2, a = 3 & g) \ \alpha = 1/2, a = 4 & h) \ \alpha = 2, a = 5 \end{array}$$

3. Calcula $\lim_{x\to\infty} |x|^{\alpha} \log_a |x|$ y $\lim_{x\to 0} |x|^{\alpha} \log_a |x|$, por L'Hôpital, en los siguientes casos:

a)
$$\alpha = -1/2, a = 2$$
 b) $\alpha = -3/2, a = 3$ c) $\alpha = 1/2, a = e$ d) $\alpha = 3/2, a = 10$

4. Calcula $\lim_{x\to\pm\infty} b^x \log_a |x|$ y $\lim_{x\to 0} b^x \log_a |x|$, por L'Hôpital, en los siguientes casos:

a)
$$a = 2, b = 1/2$$
 b) $a = e, b = 2$

5. Hallar los siguientes límites:

a)
$$\lim_{x\to 0} \frac{\operatorname{sen}(ax)}{bx}$$
 b) $\lim_{x\to 0} \frac{\operatorname{sen}(\alpha x)}{\operatorname{tan}(\beta x)}$ c) $\lim_{x\to \infty} x \operatorname{sen} x$ b) $\lim_{x\to \infty} \frac{\operatorname{sen} x}{x}$

6. Calcula la derivada de las siguientes funciones:

$$\begin{array}{ll} a) \ f(x) = b^x \log_a |1/x| & b) \ f(x) = a^{-1/x^2} & c) \ f(x) = \sin^3(a\arccos(x)) \\ d) \ f(x) = \arctan(a\tan(ax)) & e) \ f(x) = \frac{\sqrt{1+\ln(\tan(x/2))}}{e^{-3\sin(5x)}} & f) \ f(x) = x^{1/x} \end{array}$$

7. Estima el valor de:

a)
$$\ln(1/3)$$
 b) $e^{1/5}$ c) $\sin(\pi/6 + \pi/10)$ d) $\sqrt{5}$ e) $\cos(\pi/4 + \pi/15)$

utilizando un polinomio de Taylor de grado 3 de las funciones

a)
$$\ln(x)$$
 b) e^x c) $\sin(x)$ d) \sqrt{x} e) $\cos(x)$

en los puntos

a)
$$x_0 = 1$$
 b) $x_0 = 0$ c) $x_0 = \pi/6$ d) $x_0 = 4$ e) $x_0 = \pi/4$

y da una cota del error cometido usando el resto de Lagrange.

8. Representa gráficamente las siguientes funciones:

$$\begin{array}{ll} a) \ f(x) = xe^{-3x} & b) \ f(x) = (x^2-2)e^{5x} & c) \ f(x) = x^3e^{-x} & d) \ f(x) = x(x-1)(x-2) \\ e) \ f(x) = x^2(x^2-1) & f) \ f(x) = \frac{4}{x^2+3} & g) \ f(x) = \frac{x^2+8}{x-1} & h) \ f(x) = \frac{x^2}{x^2-1} \\ i) \ f(x) = \frac{x}{\sqrt{x^2-1}} & j) \ f(x) = x^2 \ln(x) & k) \ f(x) = \ln|x^2-5x+6| & l) \ f(x) = \sqrt{3x^2+8} \end{array}$$

9. Dados los siguientes subespacios vectoriales de \mathbb{R}^3 :

$$H_1 = \{(x, y, z) \in \mathbb{R}^3 / 3x + y - 2z = 0\},\$$

 $H_2 = \{(x, y, z) \in \mathbb{R}^3 / x - y = 0, 2y - z = 0\}$

Calcular:

- (a) Una base ortonormal de H_1 .
- (b) La proyección ortogonal del vector $\vec{p} = (1, 2, 1)$ sobre H_1
- (c) La proyección de \vec{p} sobre H_1 en la dirección de H_2 .
- (d) La distancia del punto (1, 2, 1) al plano H_1
- (e) El ángulo que forma \vec{p} con H_1 .
- (f) La situación relativa entre H_1 y la recta R que pasa por el punto (0,0,a) y tiene por vector director $\vec{v} = (1,1,b)$ (discutir en función de a y b).
- 10. Dados los siguientes subespacios vectoriales de \mathbb{R}^3 :

$$H_1 = {\vec{x} \in \mathbb{R}^3 / 2y + z = 0}, \ H_2 = \langle (1, -1, 2) \rangle$$

 $H_3 = \langle (1, 1, 1), (1, 1, 0) \rangle$

Calcular:

- (a) $H_1 \cap H_3, H_1^{\perp}, H_2^{\perp}, H_3^{\perp}, (H_1 \cap H_3)^{\perp} + H_2$
- (b) Bases ortonormales de H_1, H_2^{\perp}, H_3
- (c) Proyección de $\vec{p} = (0, 0, -1)$ sobre los planos H_1 y H_3 en la dirección: a) ortogonal a dichos planos, b) en la dirección de H_2 , c) en la dirección (0, 0, 1).
- (d) Determinar: a) el ángulo que forma \vec{p} con H_1 y b) la distancia de \vec{p} a H_1 .
- (e) Ángulo entre H_1 y H_3 .
- (f) La situación relativa entre H_1 y la recta R que pasa por el punto (a, 0, 0) y tiene por vector director $\vec{v} = (1, 1, b)$ (discutir en función de a y b).
- 11. Calcular el volumen del paralelepípedo generado por $\vec{u}=(3,2,5), \ \vec{v}=(1,2,7)$ y $\vec{w}=(0,0,1).$
- 12. Encuentre una ecuación para el plano que pasa por (-3,0,7) y es perpendicular al vector (5,2,-1). Sol. 5x + 2y z = -22
- 13. Encuentre el plano que pasa por (0,0,1), (2,0,0) y (0,3,0). Sol. 3x + 2y + 6z = 6
- 14. Encuentre la distancia del punto P=(1,1,1) a la recta $R_1=\{x-2y+z=2,x-y=0\}$ y a la recta $R_2=\{x=5+3\lambda,y=-2+5\lambda,z=\lambda\}$
- 15. Encuentre la distancia del punto (1,1,3) al plano 3x + 2y + 6z = 6. Sol. 17/7
- 16. Encontrar el ángulo entre los planos 3x 6y 2z = 15 y 2x + y 2z = 5 Sol. $\arccos 4/21 = 1.38$ rad

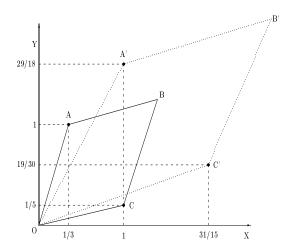
17. Dadas las siguientes superficies:

a)
$$f(x,y) = \frac{x+y}{\sqrt{x^2+y^2}}$$
 b) $f(x,y) = \frac{x^2}{\sqrt{1+2x^2-y}}$ c) $f(x,y) = \arctan(y/x)$
d) $f(x,y) = \frac{e^{-\sqrt{x^2+y^2}}}{\sqrt{x^2+y^2}}$ e) $f(x,y) = \frac{\sin(\sqrt{x^2+y^2})}{x^2+y^2}$ f) $f(x,y) = \sqrt{1-(x/a)^2-(y/b)^2}$

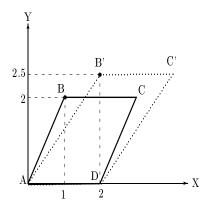
Se pide:

- (a) Escribe la ecuación $y = c_k(x)$ de las curvas de nivel f(x,y) = k =constante. ¿En qué caso se trata de circunferencias?. ¿En qué caso se trata de un haz de rectas coincidentes en un punto ("escalera de caracol")?. Ayuda: escribe f(x,y) en coordenadas polares en estos casos.
- (b) Si tenemos dos gotas de agua situadas en $(x_1, y_1) = (-1, 2)$ y $(x_2, y_2) = (1, -3)$, respectivamente, se pide:
 - i. Calcula la pendiente de la superficie (derivada direccional de f) en ambos puntos en la dirección de $\vec{h} = \hat{i} 2\hat{j}$.
 - ii. Calcula la dirección y el sentido en que es más probable que deslize la gota de agua en éstos puntos (contraria al gradiente).
 - iii. Calcula la máxima pendiente (derivada direccional máxima) en ambos puntos y di en qué punto el ritmo de bajada de la gota es más rápido.
- (c) Calcula la ecuación de los planos tangentes a cada superficie en el punto $(x_1, y_1) = (-1, 2)$
- 18. Estima mediante la diferencial dA el error cometido al medir el área A=xy de una superficie rectangular de lados x=10cm e y=20cm cuando la precisión de nuestra regla llega hasta el milímetro. Hacer lo mismo con el volumen V de un cilindro de radio r=10cm y altura h=15cm.
- 19. Estima mediante la diferencial dP el error que se comete al determinar la presión P como función del volumen V y la temperatura T en un mol (N=1) de gas perfecto con ecuación de estado PV = NRT, cuando $V = 3 \pm 0.01 \, m^3$ y $T = 300 \pm 5$ Kelvin. Dato: R = 8.3Jul.Kelvin⁻¹.mol⁻¹.
- 20. Se define la desviación vertical (en la dirección y) de un punto $P_i = (x_i, y_i)$ a la recta y = R(x) = ax + b, como $\delta(P_i, R) = y_i R(x_i)$. Hallar la recta y = R(x) que está más cerca de los siguientes tres puntos: $P_1 = (0, 0), P_2 = (0, 1), P_3 = (2, 0)$. Ayuda: calcular el mínimo de la suma de los cuadrados de todas las desviaciones verticales, es decir, de $f(a, b) = \sum_{i=1}^{3} \delta(P_i, R)^2$. Comprueba que se trata de un mínimo mediante la matriz hessiana.
- 21. Se define la desviación vertical (en la dirección z) de un punto $P_i = (x_i, y_i, z_i)$ al plano z = K(x, y) = ax + by + c, como $\delta(P_i, K) = z_i K(x_i, y_i)$. Hallar el plano z = K(x, y) que está más cerca de los siguientes cuatro puntos: $P_1 = (0, 0, 0), P_2 = (0, 0, 1), P_3 = (0, 2, 0)$ y $P_4 = (5, 0, 0)$. Ayuda: calcular el mínimo de la suma de los cuadrados de todas las desviaciones verticales, es decir, de $f(a, b, c) = \sum_{i=1}^4 \delta(P_i, K)^2$. Comprueba que se trata de un mínimo mediante la matriz hessiana. Respuesta: a = -1/10, b = -1/4, c = 1/2
- 22. Demuestra que el gradiente $\nabla f(x,y)$ de una función escalar z = f(x,y) es perpendicular a las curvas de nivel f(x,y) =cte en cada punto. Dibuja de forma cualitativa las curvas de nivel (cotas) y la dirección del gradiente en las proximidades de: a) la cúspide (punto más alto) de una montaña, b) una hondonada del terreno y c) una silla de montar

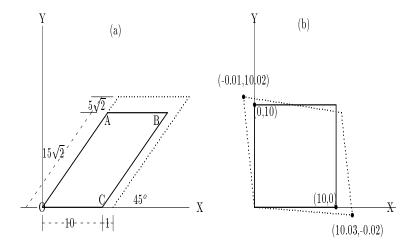
23. Determina la matriz $M_T(B_c)$ de la transformación lineal T correspondiente a la deformación del paralelogramo OABC de la figura, respecto a la base canónica $B_c = \{\hat{i}, \hat{j}\}$ (coincidente con los ejes coordenados X, Y). ¿Se trata de una dilatación o una contracción?. Determina también los valores y los vectores propios de $M_T(B_c)$.



24. Determina la matriz $M_T(B_c)$ de la transformación lineal T correspondiente a la deformación del paralelogramo ABCD de la figura, respecto a la base canónica $B_c = \{\hat{i}, \hat{j}\}$ (coincidente con los ejes coordenados X, Y). ¿Se trata de una dilatación o una contracción?. Determina también los valores y los vectores propios de $M_T(B_c)$.



- 25. Determina la matriz $M_T(B_c)$ de la transformación lineal T respecto a la base canónica $B_c = \{\hat{i} = (1,0), \hat{j} = (0,1)\}$, sabiendo que T(1,2) = (7,5) y T(-2,1) = (1,-5). Haz una representación gráfica de dicha transformación. ¿Se trata de una dilatación o una contracción?. Determina también los valores y los vectores propios de $M_T(B_c)$.
- 26. Determina la matriz $M_T(B_c)$ de la transformación lineal T respecto a la base canónica $B_c = \{\hat{i} = (1,0), \hat{j} = (0,1)\}$, sabiendo que T(2,1) = (5/2,3) y T(1,1) = (3/2,5/2). Haz una representación gráfica de dicha transformación. ¿Se trata de una dilatación o una contracción?. Determina también los valores y los vectores propios de $M_T(B_c)$.
- 27. Determina la matriz $M_T(B_c)$ de la transformación lineal T correspondiente a la deformación del paralelogramo OABC de la figura, respecto a la base canónica $B_c = \{\hat{i}, \hat{j}\}$ (coincidente con los ejes coordenados X, Y). ¿Se trata de una dilatación o una contracción?. Determina también los valores y los vectores propios de $M_T(B_c)$.



28. Determinar la matriz $M_B(T)$ de la transformación correspondiente a la deformación del cubo de lado 1 de la figura 1 en la base canónica $B = \{\hat{i}, \hat{j}, \hat{k}\}$. ¿Se trata de una dilatación o una contracción?.

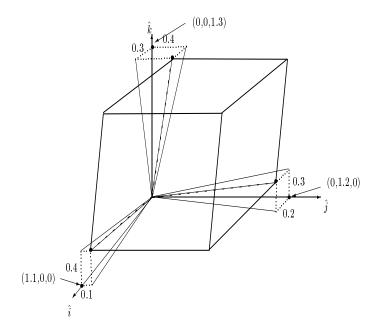


Figura 1: Deformación de un cubo de lado 1 con origen fijo

- 29. Calcula el determinante jacobiano de la transformación de coordenadas cartesianas a polares.
- 30. Calcula el determinante jacobiano de la transformación de coordenadas cartesianas a esféricas.
- 31. Deduce la expresión del gradiente $\vec{\nabla} f(r,\theta)$ de una función escalar $z=f(r,\theta)$ en coordenadas polares a partir de su expresión en coordenadas cartesianas.