LECCIÓN 1

MATERIALES BÁSICOS DEL HORMIGÓN

(Art. 26 a 30 EHE-08)

- 1. INTRODUCCIÓN
- 2. CEMENTO
- 3. AGUA
- 4. ÁRIDOS
- 5. ADITIVOS Y ADICIONES

1. <u>INTRODUCCIÓN</u>

• Unidades S.I. (Anejo 1):

Resistencias y tensiones $N/mm^2 = MPa$ (= MN/m^2)

 $(1 \text{ kp/cm}^2 = 0.1 \text{ MPa}$ $1 \text{ MPa} = 10 \text{ kp/cm}^2)$

Fuerzas kN

Momentos kN m

Longitud m

• Terminología

- Lechada de cemento: Cemento + agua
- Mortero de cemento: Cemento + agua + árido fino (arena)
- Hormigón en masa (HM): Cemento + agua + áridos (+ aditivos)
- Hormigón armado (HA): HM + armaduras pasivas
- Hormigón pretensado (HP): HA + armaduras activas
- Resistencia característica de proyecto (f_{ck}) : Valor que se adopta en el proyecto para la resistencia a compresión como base de los cálculos
- Hormigones de alta resistencia: $f_{ck} > 50 \text{ MPa}$
- **Ejemplo** de una dosificación para un hormigón $f_{ck} = 30 \text{ MPa}$

170 l agua + 366 kg cemento + 757 kg arena + 1159 kg grava

• Hormigones no convencionales

- Hormigón con fibras → Anejo 14
- Hormigón reciclado → Anejo 15
- Hormigón ligero → Anejo 16
- Hormigón autocompactante → Anejo 17
- ◆ Hormigón (convencional) de uso no estructural → Anejo 18

• Planteamiento prestacional

Art. 3 EHE-08: Para justificar que la estructura cumple las exigencias de la EHE-08, el Autor del Proyecto y la Dirección Facultativa podrán:

- a) adoptar soluciones conforme a la EHE-08 (suficiente para acreditar el cumplimiento de las exigencias establecidas en la misma), o
- b) adoptar **soluciones alternativas** (mediante sistemas de cálculo, disposiciones constructivas, procedimientos de control, etc., diferentes) bajo su personal responsabilidad y previa conformidad de la Propiedad, justificando documentalmente el cumplimiento de las exigencias (siendo sus prestaciones, al menos, equivalentes a las que se obtendrían por la aplicación de los procedimientos de la EHE-08)

• Obligatoriedad de los anejos

Anejos obligatorios: 1, 2, 3, 9, 11, 12, 18, 19, 21, 22, 23

Anejos no obligatorios: Resto.

2. CEMENTO

• CEMENTOS UTILIZABLES

RC-16: Instrucción para la recepción de cementos

CEMENTOS	TIPO	CLASE RESISTENTE Resistencia a compresión mínima a 28 días (MPa)	
Comunes	CEM I (1), II (19), III (3), IV (2), V (2)	32,5 / 42,5 / 52,5 + L/N/R	
Blancos	Ídem comunes sustituyendo CEM por BL		
Especiales de muy bajo calor de hidratación	VLH III (2), IV (2), V (2)	22,5	
Para Usos Especiales	ESP-VI	A 90 días: 22,5N 32,5N 42,5N	
De Aluminato de Calcio	CAC	≥ 40 (a 24 horas)	
L: Baja resistencia inicial N	N: Resistencia inicial norm	nal R: Alta resistencia inicial	

Los cementos comunes pueden ser:

- De bajo calor de hidratación (LH)
- Resistentes a sulfatos (SR) o al agua de mar (MR) (características adicionales)

Designación:

Cem. comunes → Norma + CEM + Tipo + Clase resistente + L/N/R (-SR -LH)

Ej.: EN 197-1 CEM I 42,5 R (pórtland de clase res. 42,5 y alta res. inic.)

EN 197-1 CEM II/A-L 32,5 N (cemento pórtland con entre 6-20 % de caliza, de clase resistente 32,5 y resistencia inicial normal)

EN 197-1 CEM I 42,5 R-SR 3 (pórtland cl. res. 42,5, alta res. inic., resistente a los sulfatos con $C_3A \le 3$ %)

Otros cementos → Tipo + Clase resistente + R o N + /Carac. adic. + Norma

Ej.: BL I 42,5 R UNE 80305

- Utilización (tabla 26 EHE-08)

Tipo de hormigón	Tipo de cemento
Hormigón en masa	Todos cementos comunes excepto 7 Cementos para usos especiales
Hormigón armado	Todos cementos comunes excepto 8
Hormigón pretensado	CEM I, II/A-D, II/A-V, II/A-P, II/A-M

- Anejo 4 EHE-08 "Recomendaciones para la selección del tipo de cemento a emplear en hormigones estructurales"
- Anejo VIII RC-16 "Recomendaciones de uso"
- El uso de CAC ⇒ Según Anejo 3 EHE-08
- Se pueden agrupar según la velocidad de endurecimiento:

Lento 32,5N
 Normal 32,5R y 42,5N
 Rápido 42,5R 52,5N y 52,5R

• SUMINISTRO – TEMPERATURA MÁX. RECOMENDADA

- Granel 70 °C

- Sacos 40 °C

Si se supera \Rightarrow Verificar **Falso Fraguado** (Rápida rigidez de la pasta por una molienda del cemento a $T^a > 100~^{\circ}C$)

• CONSERVACIÓN

Clase resistente	Tiempo máx. recomendado
32,5	3 meses
42,5	2 meses
52,5	1 mes

Si se supera el tiempo, es recomendable verificar:

Tiempos de fraguado (ensayos de principio y fin de fraguado)

Resistencia a 7 días (clase 32,5) ó 2 días (resto)

La resistencia a 28 días del hormigón es siempre el factor decisorio

• UTILIZACIÓN MEDIA EN ESPAÑA

	_
CEMENTO TIPO	UTILIZACIÓN %
BLANCO	2,0
CEM I-32,5	0,0
CEM I-42,5	10,0
CEM I-52,5	9,0
CEM II-32,5	24,0
CEM II-42,5	47,0
CEM III	0,0
CEM IV	2,0
CEM V	1,5
ESP-VI	0,0
MR ó SR ó SR/LH	4,5

3. <u>AGUA</u>

• AGUA PARA AMASADO

- * Funciones: Participa en las reacciones de hidratación del cemento
 - Trabajabilidad del hormigón
- * Cantidad de agua mínima: ↑ Agua ⇒ ↑ Trabajabilidad pero ↓ resistencia
- * Agua de mar o salina: Sólo para HM; eflorescencias; ≈15 % ↓ resistencia
- * Se permite emplear agua reciclada del lavado de las cubas de la central
- * Si no hay antecedentes de uso o en caso de duda ⇒ Análisis del agua

LIMITACIONES

CARACTERÍSTICA (NORMA)	LÍMITE
pH (UNE 83952)	≥ 5
Sustancias disueltas (UNE 83957)	≤ 15 gr/l
Sulfatos SO ₄ = (UNE 83956)	$\leq 1 \text{ gr/l}$ $\leq 5 \text{ gr/l (cem SR)}$
Ión cloruro Cl ⁻ (UNE 7178)	$\leq 1 \text{ gr/l (HP)}$ $\leq 3 \text{ gr/l (HA)}$
Hidratos de carbono (UNE 7132)	0
Sustancias orgánicas (UNE 7235)	≤ 15 gr/l
1 gr/l = 1.000 p.p.m.	

^{*} Regla práctica en caso de utilizar agua poco adecuada:

> 350 kg/m³ cemento y mejorar la preparación y puesta en obra

• AGUA PARA CURADO

Funciones: - Evitar la desecación

- Mejorar la hidratación del cemento
- Impedir retracción prematura

Preferible mejor calidad del agua de curado que la de amasado

4. ÁRIDOS

• NATURALEZA

- Áridos rodados o procedentes de rocas machacadas
- Escorias siderúrgicas enfriadas por aire
- Áridos reciclados → Anejo 15
- Áridos ligeros → Anejo 16

• LIMITACIÓN DEL TAMAÑO

- * Series de tamices (en mm):
 - Grava o árido grueso \Rightarrow 8-16-32-63-125 (serie básica)

- Arena o árido fino \Rightarrow 4-2-1-0,5-0,25-0,125-0,063 (todas series)
- * Finos de la arena (limos y arcillas) \Rightarrow < 0,063 \rightarrow Ensayos de sedimentación

* Tamaño máximo D y tamaño mínimo d del árido

Tabla 28.3.a
Requisitos generales de los tamaños máximo D y mínimo d

Árido		Porcentaje que pasa (en masa)				
	Ariuo	2 D	1,4 <i>D</i> ^{s)}	D ^{b)}	d	d/2 a)
Árido grueso	D > 11,2 y D/d > 2	100	98 a 100	90 a 99	0 a 15	0 a 5
	<i>D</i> ≤ 11,2 ó <i>D</i> / <i>d</i> ≤ 2	100	98 a 100	85 a 99	0 a 20	0 a 5
Árido fino	$D \leq 4 \text{ y } d = 0$	100	95 a 100	85 a 99		

- a) Como tamices 1,4D y d/2 se tomarán de la serie elegida o el siguiente tamaño del tamiz más próximo de la serie.
- b) El porcentaje en masa que pase por el tamiz *D* podrá ser superior al 99 %, pero en tales casos el suministrador deberá documentar y declarar la granulometría representativa, incluyendo los tamices *D*, *d*, *d*/2 y los tamices intermedios entre *d* y *D* de la serie básica más la serie 1, o de la serie básica más la serie 2. Se podrán excluir los tamices con una relación menor a 1,4 veces el siguiente tamiz más bajo.

Fuente: EHE-08, 2011

- *D* viene condicionado por las dimensiones de los elementos estructurales y separación entre armaduras
- Designación del árido \Rightarrow d/D IL (N)

IL = R, rodado; T, triturado o de machaqueo; M, mezcla

- N = C, calizo; S, silíceo; G, granito; O, ofita; B, basalto; D, dolomítico;Q, traquita; I, fonolita; V, varios; A, artificial; R, reciclado
- En fase de proyecto, para especificar el hormigón, sólo D (denominado TM)
- * Limitación contenido en **finos** (tabla 28.4.1.a) ⇒ Depende de: **Tipo de árido Ambiente**

Óptimo contenido en granos finos ⇒ ↑Trabajabilidad y ↓disgregación

- * Existe un huso granulométrico para las arenas (tabla 28.4.1.b)
- * Índice de lajas < 35 % en peso

• SUMINISTRO

- Antes: Documentos de conformidad o autorizaciones administrativas exigidas reglamentariamente
- **Durante:** Hojas de suministro de cada partida o remesa conforme al Anejo 21 (Documentación de suministro y control)
- **Después:** Certificado de garantía del producto suministrado conforme al Capítulo XVI EHE-08 (Control de la conformidad de los productos), firmado por persona física, de acuerdo con lo indicado en el Anejo 21

• ALMACENAMIENTO

- Evitar contaminación (terreno, ambiente)
- Evitar segregación durante transporte y almacenamiento
- Evitar mezclas incontroladas

5. ADITIVOS Y ADICIONES

• ADITIVOS

Se incorporan al hormigón fresco (antes o durante el amasado) para modificar alguna característica, propiedad habitual o comportamiento.

Dosificación < 5 % del peso del cemento

Tabla 29.2 Tipos de aditivos

Tipo de aditivo	Función principal
Reductores de agua / Plastificantes	Disminuir el contenido de agua de un hormigón para una misma trabajabilidad o aumentar la trabajabilidad sin mo- dificar el contenido de agua.
Reductores de agua de alta actividad / Superplastificantes	Disminuir significativamente el contenido de agua de un hormigón sin modificar la trabajabilidad o aumentar signi- ficativamente la trabajabilidad sin modificar el contenido de agua.
Modificadores de fraguado / Acele- radores, retardadores	Modificar el tiempo de fraguado de un hormigón.
Inclusores de aire	Producir en el hormigón un volumen controlado de finas burbujas de aire, uniformemente repartidas, para mejorar su comportamiento frente a las heladas.
Multifuncionales	Modificar más de una de las funciones principales definidas con anterioridad.

Fuente: EHE-08, 2011

- Aceleradores: Para tiempo frío y para ↓tiempo de desencofrado

- Retardadores: Para tiempo caluroso y gran distancia de transporte

- Plastificantes/Superplastificantes: Empleo de ↓agua para ↑resistencia o ↓cem. Empleo para altas densidades de armado y hormigones de alta resistencia
- Aireantes: ↑Trabajabilidad, homogeneidad, aspecto, resistencia a heladas pero ↓Resistencia mecánica y ↓Adherencia hormigón-acero

Prescripciones:

- Evitar cloruros, sulfuros, etc. que favorezcan la corrosión de armaduras
- Evitar aireantes en HP con armaduras ancladas por adherencia

• ADICIONES

Materiales hidráulicos (inorgánicos, puzolánicos) que pueden añadirse al hormigón para mejorar alguna propiedad o conferir características especiales

- Adiciones posibles:
 - * Cenizas volantes (máx. 35 % en edificación; 20 % en HP)
 - Son residuos sólidos de los gases de combustión de los quemadores de las centrales termoeléctricas alimentadas por carbones pulverizados.
 - En HP → Mejora la compacidad del hormigón
 - * Humo de sílice o microsílice (máx. 10 % en ambos casos)
 - Es un subproducto que se origina en los hornos eléctricos de arco para la producción de silicio y ferrosilicio.
 - En HAR → Mejora la compacidad y ↑resistencia mecánica
- Sólo se admite adiciones con CEM I
- Ventajas medioambientales pero riesgo de ↑heterogeneidad → La central de hormigonado debe <u>comprobar su regularidad</u> mediante el control de recepción, para que las posibles variaciones de su composición no afecten al hormigón