
Unit 3. Linear Programming. The simplex

method

Operations Research is a branch of Mathematics which generally relates to problems when

the aim is to find a method for finding the best solution to a problem of allocating scarce

goods among alternative purposes. As part of Operations Research, Linear Programming

studies the optimisation of linear functions with constraints that are linear equations and

inequations (hyperplanes or semi-spaces).

3.1 Introduction to Linear Programming

A mathematical model is solved by applying Linear Programming techniques if the objective

function and the constraints of the problem are linear functions of the decision variables

and, in addition, these variables can take on any non-negative value. Linear programming

techniques have been applied to problems relating to economic, financial, marketing, farming,

military, transport, health, and education systems, among others. Despite its diversity, all

these problems share a series of properties as we will see below.

• All problems seek to maximise or minimise an amount. For example, a production com-

pany wishes to maximise profit, a consumer to maximise a utility function or minimise

related expenses, a distribution system to minimise transport costs, etc.

• All linear programming problems have constraints that limit the degree that we are able

to reach our objective. For example, in order to decide how many units to produce of

a good, we must take into account the limitations of personnel and available machines.

Therefore, we want to maximise or minimise an amount (objective function) that is

subject to resource limitations (constraints).

• The objective should be a linear function, and it should be possible to express the

constraints as linear equations or inequations. Mathematically this means that all the
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terms in the objective function and the constraints are grade one terms (that is, they are

not square or any other exponent, or more than one at the same time). For example,

2x1 + 5x2 = 10 is linear, 2x2

1
+ 5/x2 + 3x1x2 = 10 isn’t linear. The following table

contains examples of some linear and non-linear terms.

Linear Non linear

2x1 2x2

1

−3x2
−3

x2

1

3
x5

1

3
x2x5

√
5x3 5 ex3

To be considered as a linear problem, it must moreover have the following characteristics:

• There should be various alternative actions. The set of all of these is called a feasible set

or a feasible region. For example, if a company manufactures three different products, its

management can use linear programming techniques to decide how to divide production

of the three products taking into account its limited resources.

• All decision variables are non-negative. Although there may be real situations (this

happens, in fact) where variables take on negative values, such as, for example, when it

is necessary to decide on varying an amount (a variation could be positive or negative),

any problem can be transformed into an equivalent one where all variables are positive.

This is the reason why Linear Programming focuses on studying problems with non-

negative decision variables.

Fulfilling the above-mentioned characteristics implies that Linear Programming problems

verify a series of assumptions that do not always occur in actual situations. Even though

linear programming has proven to be a valuable tool for solving major and complex problems

of companies and of the public sector, there are some circumstances where it should be sub-

stituted by other branches of Operations Research, such as Integer Programming, Stochastic
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Programming, Dynamic Programming, Non-linear Programming, Multi-objective Program-

ming, or the Game Theory, among others.

After describing some of the general characteristics of linear programming problems, we

will study some guidelines that will help us to perform this not always easy task of modeling

a situation by formulating Linear Programming problem.

3.2 Formulating linear problems

Formulating a quantitative model implies selecting the important elements of the problem and

defining their inter-relation. This is not an easy or systematic task. Nevertheless, there are

certain steps that have demonstrated their usefulness in the formulation of linear programming

models.

1. Prepare, as a specifically as possible, a list of decisions that have to be made.

2. Define verbally the objective sought with the resolution of the problem. Select just one

objective, for example, reducing costs or increasing the contribution to profit, etc.

3. Prepare a precise and complete list of the restriction factors affecting the decisions that

have to be made.

4. Explicitly define the decision variables. This is frequently the most difficult step and

the most decisive one, since the others steps should be based on the decision variables

defined in this point. The requirement is a list of variables, including specifications

of measurement units and timing. In some problems, there may be more than one

way to define the variables. A possible approach is to begin to try to define specific

variables adapted to the list of decisions detailed in step 1. For example, if a company

with limited resources (personnel, machinery, materials, etc.) produces two or more

products and wants to maximise profit, the problem involves determining how many

units of each product should the company produce to obtain the maximum profit allowed

by constraints. In this case, a viable set of decision variables is usually:
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x1 = of units of product 1 to be manufactured by the firm

x2 = of units of product 2 to be manufactured by the firm

· · ·

xn = of units of product n to be manufactured by the firm

5. Define the objective function in detail. It is necessary to define the coefficient that

measures the contribution that each decision variable makes for fulfilling the objective.

It is important to include only those measures that differ from the decisions under

consideration. For example, if the objective function is a cost function, the expression

should exclude fixed costs since these do not vary depending on the decision variables

(these are fixed).

6. Define constraints based specifically on the decision variables. Take the list of constraints

previously defined in step 3 and apply the decision variables of step 4 to obtain the

detailed constraints. It is important not to overlook the constraints indicated in the set

that take their values from each of the variables such as xi ≥ 0 or xi ∈ [−2, 2].

After completing the previous steps, we obtain a formulation of a linear programming

problem similar to the following one:

Optimize f(x1, x2, . . . , xn) = c1x1 + c2x2 + · · ·+ cnxn

Suject to a11x1 + a12x2 + · · ·+ a1nxn S b1
...

...
...

ai1x1 + ai2x2 + · · ·+ ainxn S bi
...

...
...

am1x1 + am2x2 + · · ·+ amnxn S bm

x1, x2, . . . , xn ≥ 0
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In a problem of this type, f (the function to optimise) is called an objective function and

the set of points that verify all restrictions is known as the feasible region.

We will look at some examples where we will show the different fields to which these Linear

Programming techniques are applied.

Example 1. A furniture factory produces tables and chairs at affordable prices. The pro-

duction process in both cases is similar and requires a certain number of manpower hours for

carpentry and another number of hours for painting and varnishing. Each table requires 4

hours of carpentry work and 2 h. of painting. Each chair requires 3 h. of carpentry and 1 h.

of painting. During the current production period, the available manpower hours of carpentry

and painting are 240 and 100 h., respectively. Each table generates a profit of 7 m.u. and

each chair 5 m.u. The aim is to determine the best possible combination for manufacturing

tables and chairs so as to obtain the maximum possible profit.

Following the previously described steps, we will formulate this situation as a linear pro-

gramming problem.

1. The decision list of the problem is:

• The firm’s chair production in the current period.

• The firm’s table production in the current period.

2. The objective of the problem is to maximise the profit generated by the production of

tables and chairs.

3. The constraints of the problem are:

• Limited number of carpentry manpower hours.

• Limited number of manpower hours for paining and varnishing.
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4. Taking step 1 into account, the following decision variables are taken into consideration:

x1 = number of tables to be produced during the current period

x2 = number of chairs to be produced during the current period

5. Considering the profit per unit of each type of furniture, the profit generated by the

production of tables and chairs is 7x1 and 5x2 m.u. respectively and, therefore, the

company’s total profit would be 7x1 + 5x2, which would be the amount to maximise.

6. Puesto que fabricar una mesa precisa de 4 h. de carpinteŕıa, la fabricación de x1 mesas

empleará 4x1 h. En cuanto a las sillas, la fabricación de x2 unidades requerirá un tiempo

de 3x2 h., con lo que el tiempo total de carpinteŕıa necesario para producir x1 mesas y

x2 sillas será de 4x1 + 3x2 h. Esta cantidad no puede superar las 240 horas de que se

dispone en total para los trabajos de carpinteŕıa (en el periodo actual), con lo que se

tiene la restricción:

Since 4 h. of carpentry are required for manufacturing a table, manufacturing x1 tables

will require 4x1 h. As to the chairs, manufacturing x2 units requires 3x2 h. and,

accordingly, the total carpentry hours required for producing x1 tables and x2 chairs will

be 4x1+3x2 h. This amount cannot exceed the total 240 available carpentry manpower

hours (in the current period) which means that the restriction is 4x1 + 3x2 ≤ 240 .

Applying the same reasoning for the hours of paint required for production, we obtain

a new restriction:

2x1 + x2 ≤ 100 .

The only thing that we must do is to specify the sign and the types of variables in relation

to the problem. Since variables refer to physical quantities, both are positive and,

furthermore, since these variables only make sense for whole values, the corresponding

restriction is

x1, x2 ≥ 0, x1, x2 ∈ Z.
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Therefore, the problem will be posed as follows:

Maximize 7x1 + 5x2 (profit)

Subject to 4x1 + 3x2 ≤ 240 (hours of carpentry)

2x1 + x2 ≤ 100 (hours of paint)

x1, x2 ≥ 0, x1, x2 ∈ Z

Example 2. A textile firm produces five types of denim garments: long pants (LP), short

pants (SP), long skirts (LS), short skirts (SS) and jackets (J). The amounts of fabric, thread,

labour and machinery required for each type of garment and the available resources are

detailed in the following table.

LP SP LS SS J Disponibility

Fabric (m.) 2 1.5 2 1 3 20

Thread (m.) 3 1 2 1 3 40

Labour (h.) 2.5 1 2 1.5 3.5 10

Machinery (h.) 1.5 1 1 1 2 12

The businessman wants to know the amount of each garment that he should produce on a

daily basis in order to obtain the maximum profit, taking into account that the costs and

revenue per unit of each garment are those listed in the following table and that it is necessary

to cover demand for at least two long pants each day.

LP SP LS SS J

Cost (m.u.) 2 1.5 2 1 3.5

Revenue (m.u.) 4.5 3 4 2 8

To formulate this problem, we follow the steps previously described.

1. The businessman must decide how many units of each garment the firm should manu-

facture: long and short pants, long and short skirts, and jackets.
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2. The aim is to maximise the profit that the textile company obtains from manufacturing

and selling its denim garments.

3. The above-mentioned decisions are subject to limitations on the amount of available

materials (fabric and thread), labour and machinery. Furthermore, there is a minimum

number of long pants that must be manufactured (2 units).

4. We will select the variables according to the decisions that the businessman must make:

x1 =number of long pants to be manufactured daily

x2 =number of short pants to be manufactured daily

x3 =number of long skirts to be manufactured daily

x4 =number of short skirts to be manufactured daily

x5 =number of jackets to be manufactured daily

5. The profit generated by the production of xi units of each product is given by the

difference between the revenue obtained and the unitary cost of these xi units. For

example, the profit obtained from the production of x1 long pants is 4.5x1−2x1 = 2.5x1.

Applying the same reasoning for the other garments, we conclude that the expression

for the total profit related to the production of the entire range of the company’s articles

is

2.5x1 + 1.5x2 + 2x3 + x4 + 4.5x5

which is the objective function to maximise.

6. Fabric, thread, machinery and labour resources for producing these garments are limited.

Thus, the fabric constraint is 2x1 + 1.5x2 + 2x3 + x4 + 3x5 ≤ 20.

The thread constraint is 3x1 + x2 + 2x3 + x4 + 3x5 ≤ 40.

The labour constraint is 2.5x1 + x2 + 2x3 + 1.5x4 + 3.5x5 ≤ 10.

And the machinery constraint is 1.5x1 + x2 + x3 + x4 + 2x5 ≤ 12.

In addition, to cover demand for long plants, the following must be met: x1 ≥ 2.

Lastly, the amounts produced must be non-negative. Even though it may seem that

variables have to be necessarily integer variables, in this case it is possible to interpret
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fractional values of the decision variables in terms of the problem. This is because

we are studying the factory’s production per day, even though production continues

on the following day. From that perspective, manufacturing 1.6 units of long pants

implies producing a complete unit plus 60% of the following unit of long pants. To

the purposes of formulating the problem, this 60% of the garment produces 60% of the

profit generated by a fully-manufactured pant. This makes sense since this will be the

case when employees finish manufacturing the garment on the following day. Therefore,

even if the item generates profit on the day that it is completed, the profit should be

divided based on the weighted average of the days required for its production. This is

also the case for the materials, labour and machinery required for manufacturing the

above-mentioned 60% of the pant. In short, it could be said that decision variables must

only verify xi ≥ 0, i = 1, 2, . . . , 5.

Accordingly, the problem arising from the process can be formulated as follows:

Maximise 2.5x1 + 1.5x2 + 2x3 + x4 + 4.5x5 (profit)

Suject to: 2x1 + 1.5x2 + 2x3 + x4 + 3x5 ≤ 20 (fabric)

3x1 + x2 + 2x3 + x4 + 3x5 ≤ 40 (thread)

2.5x1 + x2 + 2x3 + 1.5x4 + 3.5x5 ≤ 10 (manpower)

1.5x1 + x2 + 1x3 + x4 + 2x5 ≤ 12 (machinery)

x1 ≥ 2 (LP demand)

xi ≥ 0, i = 1, 2, . . . , 5

Example 3. A cargo aircraft has three storage areas: front, central, and rear. The capacity

of each of these areas is limited in terms of weight and volume. These limits are shown on

the following table:
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Zone Maximum allowed weight (T) Maximum allowed volume (m3)

Front 12 260

Central 18 330

Rear 10 190

There are two cargoes with the following characteristics foreseen for the next flight:

Cargo Weight (T) Density (m3/T) Profit (e/T)

A 36 25 350

B 40 20 325

The aircraft company wants to know how much load it should accept of each cargo and how

it should be distributed in the storage areas so as to maximise the flight’s profit.

1. The company must determine the amounts of cargo that the aircraft will be able to

carry of each of the cargoes and how it will be distributed in the different storage areas.

2. The company’s goal is to maximise the aircraft’s profit for carrying a specific cargo.

3. The company’s decisions are limited by the maximum weight and volume permitted

in each of the aircraft cargo compartments as well as by the amount of cargo to be

transported.

4. In this step, we select the decision variables for posing the problem. Errors in this

point may sometimes prevent the correct establishment of constraints and/or objective

functions. If this occurs, we should go back to this step and correct the decision variables.

For example, the reader may be tempted to define the following set of variables: x1 =

amount (Mt) of cargo A to be carried by the aircraft x2 = amount(Mt) of cargo B to

be carried by the aircraft

We know that the maximum weight that the aircraft can accept in its front cargo com-

partment cannot be more than 12 Mt and that the aircraft will be carrying a total of
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x1 + x2 tons. But what portion will be distributed in each area? How can we formu-

late this restriction without knowing the amount to be carried in each of the aircraft’s

compartments? We can see that with this set of variables, it is impossible to determine

the constraints of the problem and, therefore, we must modify it. This is also the case

if we select the following as variables:

x1 = number of (Mt) of cargo that will be carried in the front zone

x2 = number of (Mt) of cargo that will be carried in the central zone

x3 = number (Mt) of cargo that will be carried in the rear zone

The problem of using these variables is that, although we can decide the total amount

to be carried in each of the aircraft’s compartments, we cannot decide which amount

of load A and of load B should be accepted. Thus, we will use the following decision

variables:

x1F = number of Mt of cargo A in the front zone

x2F = number of MT of cargo B in the front zone

x1C = number of MT of cargo A in the central zone

x2C = number of Mt of cargo B in the central zone

x1R = number of Mt of cargo A in the rear zone

x2R = number of Mt of cargo B in the rear zone

5. Since profit per ton of cargoes A and B is 350 and 325e respectively, the aircraft’s total

profit is given by the expression

350(x1F + x1C + x1R) + 325(x2F + x2C + x2R) .

6. The maximum number of cargo tons to be carried is limited. The constraints reflecting

this particular are:
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x1F + x1C + x1R ≤ 36

x2F + x2C + x2R ≤ 40

The constraints on the maximum weight that can be carried in each of the aircraft’s

compartments are:

x1F + x2F ≤ 12

x1C + x2C ≤ 18

x1R + x2R ≤ 10

To determine the constraints regarding the maximum volume allowed in each cargo com-

partment, we should refer to the density of the cargoes: given that each ton of cargo A

occupies 25 m3, the volume (in m3) occupied by x1F tons of cargo A to be carried in

the front area of the plane is 25x1F . Proceeding in a similar way with both loads and

with the different cargo compartments, we arrive at:

25x1F + 20x2F ≤ 260

25x1C + 20x2C ≤ 330

25x1R + 20x2R ≤ 190

Lastly, since all variables are positive and can take on fractional values, we have:

xiF , xiC , xiR ≥ 0, i = 1, 2.

The problem, therefore, is formulated as follows:
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Maximise 350 (x1F + x1C + x1R)+

325 (x2F + x2C + x2R) (profit)

Subject to x1F + x2F ≤ 12 (weight in front zone)

x1C + x2C ≤ 18 (weight in central zone)

x1R + x2R ≤ 10 (weight in rear zone)

25x1F + 20x2F ≤ 260 (volume in front zone)

25x1C + 20x2C ≤ 330 (volume in central zone)

25x1R + 20x2R ≤ 190 (volume in rear zone)

x1F + x1C + x1R ≤ 36 (weight cargo A)

x2F + x2C + x2R ≤ 40 (weight cargo A)

xiF , xiC , xiR ≥ 0, i = 1, 2

3.3 Graphical solution. Classification of linear problems

Linear problems with only two variables can be represented and solved graphically. The

graphical resolution of simple linear problems facilitates the comprehension of some of the

techniques that we will use later on to solve more complex problems (the simplex method).

To determine this concept, let us consider that we are studying one of the two following linear

problems:
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Maximise c1x1 + c2x2

Subject to a11x1 + a12x2 ⋚ b1

a21x1 + a22x2 ⋚ b2

. . .

am1x1 + am2x2 ⋚ bm

x1, x2 ≥ 0

Minimise c1x1 + c2x2

Subject to a11x1 + a12x2 ⋚ b1

a21x1 + a22x2 ⋚ b2

. . .

am1x1 + am2x2 ⋚ bm

x1, x2 ≥ 0

Using this nomenclature, the graphical method for linear problems can be described in the

following steps:

Algorithm (Graphical method for linear problems with two variables)

Firstly, we associate one of the problem variables to each coordinate axis, generally x1, to

the horizontal axis and x2 to the vertical axis. Then we perform the following steps:

• Step 1. We trace straight lines associated with the constraints of the problem. These

will be the straight lines delimitating the boundary of the feasible region.

r1 : a11x1 + a12x2 = b1

r2 : a21x1 + a22x2 = b2

. . . . . . .

rm : am1x1 + am2x2 = bm

We represent the set of points that form each one of the constraints, taking into account

that if the i−th restriction is an inequality, the corresponding set is a semi-plane the

boundary of which is the straight line ri, whereas if the i−th restriction is an equality,

the set that we will study is precisely the straight line ri.

Since the variables just take non-negative values, we only consider the points in the first

quadrant. Then the feasible set is the region resulting from the intersection of all those
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sets.

– If the feasible set is empty, then there is no solution to the problem because it is

unfeasible (the constraints are incompatible, there is no point verifying all the

constraints). In this case we are finished.

– If the feasible set contains a single point, then that point is the optimum and we’re

finished as well.

– Otherwise, if the feasible set contains more than one point, go to Step 2.

• Step 2. Trace a level k straight line of the objective function, being k any real number.

That is, select any k and represent the straight line L(k) : c1x1+c2x2 = k. If the chosen

straight line hasn’t any point in the feasible region, then choose a different L(k), with

any points in the feasible region. Go to Step 3.

• Step 3. If we have a maximisation problem, we look for the straight line L(k) with

the greatest level (that is, straight line L(k) with a greater k value) among the straight

lines containing any point in the feasible region. If we have a minimisation problem, we

must look for the level L(k) straight line with the lowest level (straight line L(k) with

a lesser value of k).

– If this straight line does not exist, that is, if there is always a level k straight line

that is better than the previous one, then the problem has no solution. We say in

this case it a problem with unlimited improvement.

– If we find a straight line L(k) with the best level among the straight lines containing

only one point in the feasible region (a vertex), then this is a problem with a

single solution. The optimum of the problem is the point of L(k) belonging to

the feasible region. The optimal value of the problem is k.

– If we find a straight line L(k) with the best level among the straight lines containing

infinite points in the feasible region (a straight line in the boundary of the feasible
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region), then this is a problem with infinite solutions. The optimums of the

problem are the points of L(k) belonging to the feasible region, which we will

calculate with convex combinations. The optimal value of the problem is k.

Example 4. We will now graphically solve the problem of the furniture factory in Example

1.

The problem was formulated as:

Max 7x1 + 5x2 (beneficio)

Subject to 4x1 + 3x2 ≤ 240 (carpentry hours)

2x1 + x2 ≤ 100 (painting hours)

x1, x2 ≥ 0

We will apply the graphical method in Algorithm 4 to look for its optimal points.

Step 1. The straight lines related to the constraints are:

r1 : 4x1 + 3x2 = 240

r2 : 2x1 + x2 = 100

We represent them graphically (Figure 1). Each of these straight lines divides the plane

into two semi-planes. The feasible region is the intersection of them in the first quadrant of

the plane.

Note that any point of the feasible region verifies all the constraints of the problem. For

example, it is possible to manufacture x1 = 30 tables and x2 = 20 chairs since the point

(30, 20) belongs to the feasible set; however, it is not feasible to manufacture x1 = 50 tables

and x2 = 5 chairs because point (50, 5) does not belong to the feasible region since it does

not verify the second constraint.
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L(210) : 7x
1 +

5x
2 =

210

L(325) : 7x
1 +

5x
2 =
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L(500) : 7x
1 +

5x
2 =

500
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Figure 1: Graphical solution for the furniture problem

Since the feasible region contains more than one point, we go to Step 2.

Step 2. We trace a level straight line of the objective function, for example, of level 210

(see Figure 1): L(210) : 7x1 + 5x2 = 210.

When the objective function is a profit function (as in this problem), the level straight

lines of the objective function are also known as iso-profit straight lines. In this case, the

points of the straight line L(210) are all the production combinations of tables and chairs

generating a profit for the company of 210 m.u.

We consider now the level straight lines of the objective function that contain a point

of the feasible set, that is, straight lines parallel to the previous one (in Figure 1, besides

L(210), another three straight lines were drawn: L(325), L(410) and L(500)). Since it entails

a maximisation problem, we look for the straight line with the highest profit that cuts across

the feasible region. In Figure 1 we can see that this straight line is the one that passes through

one of the vertices of the feasible region, specifically, the vertex generated by the intersection

of the straight lines associated to the constraints:
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r1 : 4x1 + 3x2 = 240

r2 : 2x1 + x2 = 100.

It is easy to confirm that this point is (30, 40). To determine the optimal value of the

problem, we substitute the point in the objective function: 7 · 30 + 5 · 40 = 410.

The set of the optimums of the problem consists of a single point, the (30, 40) point which

has an objective value of 410.

We can conclude, therefore, that the furniture factory obtains maximum profit when it

produces x1 = 30 tables and x2 = 40 chairs, and that the maximum profit is 410 m.u.

Moreover, there is no other combination of manufactured tables and chairs that generate the

same profit.

Finally, when we substitute point (30, 40) in the constraints, we arrive at 4 · 30 + 3 · 40 =

120 + 120 = 240, that is, all the available manpower hours for carpentry are used. As to

the paint constraint: 2 · 30 + 40 = 60 + 40 = 100. This means that all the manpower hours

available for painting are used.

Example 5. Consider the next linear problem:

Max x1 + 2x2

−x1 + x2 ≥ 1

15x1 + 10x2 ≤ 150

6x1 + 6x2 ≥ 36

x2 ≤ 10

x1, x2 ≥ 0
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Figure 2: Feasible region in Example 5
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Figure 3: Example 5 with objective function Max x1 + 2x2.
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The straight line of the greatest level is the one that passes through the vertex indicated in

Figure 3. To determine it, we proceed as we did in the previous example: the vertex through

which the straight line passes is the one that is generated at the intersection of the straight

lines:

15x1 + 10x2 = 150

x2 = 10,

with which we obtain its coordinates, which are
(

10

3
, 10

)

. The objective value for this point

is 10

3
+ 2 · 10 = 70

3
.

The intersection of the level straight line of L(70/3) with the feasible region is a single

point, (10/3, 10). Consequently, the problem has only one optimum in point (10/3, 10). The

maximum value of the objective function is then 70/3.

Example 6. Let us consider now the same feasible region as in the example above, but with

the objective Max 7x1 + x2.

In this case, the straight line of the greatest level is the one cutting through the feasible region

in the vertex indicated in Figure 4. To determine its coordinates, we calculate the intersection

of the straight lines:

15x1 + 10x2 = 150

−x1 + x2 = 1,

The point is
(

28

5
, 33

5

)

.

In short, the straight line of the greatest level containing any of the points of the feasible

region is L
(

229

5

)

: 7x1 + x2 = 229

5
. The problem has only a single optimum in point

(

28

5
, 33

5

)

.

The maximum objective value is 229

5
.

Example 7. Let’s consider now the same problem with objective function
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2
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x
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=

2
2
95

Figure 4: Example 6 with objective function Max 7x1 + x2.

Max
15

2
x1 + 5x2.

The straight line of the greatest level has points of the feasible region which simultaneously

contains two vertices of the feasible region, the two shown in Figure 5. These vertices are

calculated as the intersection of the straight lines of the boundary of the feasible region. The

intersection of the straight lines:

15x1 + 10x2 = 150

x2 = 10,

is the point
(

10

3
, 10

)

. The other vertex is the intersection of the straight lines:

15x1 + 10x2 = 150

−x1 + x2 = 1 ,

21



Business Mathematics II, 2nd G.A.D.E., 2012/13 B.Cobacho

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10
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30

L(75) : 15
2 x

1 +
5x

2 =
75

Figure 5: Example 5 with objective function Max 15

2
x1 + 5x2.

which is point
(

28

5
, 33

5

)

.

The straight line of the greatest level with points of the feasible region is:

L(75) :
15

2
x1 + 5x2 = 75.

The intersection of L(75) with the feasible region is the segment joining the points
(

10

3
, 10

)

and
(

28

5
, 33

5

)

. the problem has infinite optimum points, all of which have an objective value

of 75.

Since the set of optimums is the above-mentioned segment, we can express the optimal solu-

tions of the problem as points:

λ

(

10

3
, 10

)

+ (1− λ)

(

28

5
,
33

5

)

=

(

−34

15
λ+

28

5
,
17

5
λ+

33

5

)

,

with λ ∈ [0, 1].

22



Business Mathematics II, 2nd G.A.D.E., 2012/13 B.Cobacho

Example 8. We will study the problem of the following objective function:

Min − x1 + 5x2 .

The problem entails minimising the objective function, which means that we must determine

among all the level straight lines containing points of the feasible region the one with the

lowest level. The vertex shown in Figure 6 is contained in the straight line with the lower

level among the level straight lines that cut the feasible set. This point belongs simultaneously

to the straight lines:

6x1 + 6x2 = 36

−x1 + x2 = 1 ,

and, therefore, its coordinates are
(

5

2
, 7

2

)

. The lowest level straight line is L(15) : −x1+5x2 =

15 .

Therefore, the problem has a single minimum, point
(

5

2
, 7
2

)

, and the minimum value of the

objective function is 15.

Example 9. Consider now the objective:

Min x1.

The straight line with the lower level which cuts the feasible region is the straight line which

goes through the vertices shown in figure 7, which is the straight line of level 0:

L(0) : x1 = 0.

Therefore, all the points of the vertex extreme segment (0, 10) and (0, 6) are optimums of the

problem, with an objective value equal to 0. Specifically, the points of this segment are given
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1 2 3 4 5 6 7 8 9 10

L(0) : −x1 + 5x2 = 0

L(15) : −x1 + 5x2 = 15

Figure 6: Example 5 with objective function Min −x1 + 5x2.

by the expression:

λ(0, 6) + (1− λ)(0, 10) = (0, 10− 4λ) λ ∈ [0, 1].

Example 10. Consider the next problem:

Min −10x1 + 4x2

s.a x1 − x2 ≤ 2

5x1 − 2x2 ≤ 16

x1, x2 ≥ 0

In this case, the feasible set is not bounded.

The straight line of the lower level which cuts the feasible region cuts in the vertex represented

by the intersection of the straight lines:
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1
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L
(0)

:
x
1
=
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Figure 7: Example 5 with objective function Max x1.

x1 − x2 = 2

5x1 − 2x2 = 16,

It is vertex (4, 2). The level straight line that contains that point is L(−32) : −10x1 + 4x2 =

−32 .

The straight line L(−32) contains an entire straight semi-line of the boundary of the feasible

set. Therefore, the problem has infinite optimal solutions in the straight semi-line with vertex

(4, 2). The minimum value is −32.

Example 11. Let us consider now the same feasible region with the objective Max −10x1+

4x2 .

We can see that for any given straight line of level level L(k) with points in the feasible set,

there is always another level straight line also containing feasible points. Therefore, there is

no maximum level straight line containing the points of the feasible region. In this case, the
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2

Figure 8: Example 10.

problem has no solution because it’s a problem with unlimited improvement.

Example 12. Let us consider a problem with any objective with the following constraints:

2x1 + x2 ≥ 10

4x1 + 2x2 ≤ 8

x1, x2 ≥ 0

There is no point that verifies both inequalities simultaneously (See Figure 10), that is, the

feasible region is empty and, accordingly, the problem has no solution. In this case the

problem is unfeasible.

We have seen that, according to the type of solution of a linear problem, it is classified in one

of the following four categories:
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8

2x1 + x2 ≥ 10

Figure 9: Unfeasible problem

1. 1. Problems with a single optimal solution. The optimal value of the objective

function is found in a single point. This point will be one of the vertices of the feasible

region.

2. Problems with infinite solutions. The optimal value of the objective function is a

side of the boundary of the feasible region (a segment or a straight semi-line).

3. Problems with no solution because they have unlimited improvement. This

is a type of problem that has no solution because the feasible region is not limited and

there is a direction of unlimited improvement. That is, for any feasible point, there

are always other feasible points that provide a better unlimited value of the objective

function.

4. Problems with no solution because they are unfeasible. The constraints of the

problem are incompatible and, therefore, there is no point verifying all the constraints.
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3.4. The simplex method

We studied in the previous section how linear problems with two variables can be graphically

solved, in which case, we noticed that if there are optimal solutions to the problem, at least

one is a vertex of the feasible region. In this section, we will study an algorithm (the simplex

method) in order to find an optimal solution to a linear problem with any number of variables

by looking among the vertices of the feasible region. This method transfers the geometric

idea that we studied in the graphic method to an algebraic development. Initially conceived

in 1947 by George Dantzig, it was later developed and expanded until a complete algorithm

was built that makes it possible to detect the type of linear problem (single solution, infinite

solutions, or with no solution) and to obtain all the optimums of the problem.

Linear problems in standard form

The simplex algorithm is applied to a specific type of problem known as linear problem in

standard form. If the problem is in standard form, it can be solved by applying the simplex

algorithm. If not, several modifications are required to transform it into a linear problem

equivalent to the first one but in standard form. Even though it is not necessary for the

problem to be in standard form when solved by a computer program, knowing the underlying

structure behind the algorithm used by computers is very useful to gain a better understanding

of the information provided by these programs.

Definition 13. A linear problem can be said to be in standard form when it presents the

following features:

• Variables only take on non-negative values.

• All constraints (except for those with a non-negative sign of the variables) are equalities.

• The independent term of these equalities (the term situated at the right of the equality)

is non-negative.
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Accordingly, the general standard form structure of a linear problem with n variables and

m constraints is as follows:

Optimise z = c1x1 + c2x2 + . . .+ cnxn

Subject to a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

· · ·
am1x1 + am2x2 + . . .+ amnxn = bm

xj ≥ 0, j = 1, 2, . . . , n

being bi ≥ 0 for all i = 1, 2, . . . , m.

It is often useful to use an abridged notation to refer to the above-mentioned expressions.

This is achieved by writing the elements in matrix form:

x =















x1

x2

...

xn















∈ IRn, c =















c1

c2

...

cn















∈ IRn, b =















b1

b2

...

bm















∈ IRm,

and

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . .

am1 am2 · · · amn

















∈ Mmxn.

Therefore, the linear problem in standard form can be written in a matrix notation as:
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Optimise cx

Subject to Ax = b

x ≥ 0

It is sometimes advisable to distinguish among the different columns of matrix A, which

are referred to as Pj :

A =

P1 P2 · · · Pn

















a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . . . . . .

am1 am2 · · · amn

















=
(

P1 P2 · · · Pn

)

,

where Pj is the j − th column vector in matrix A:

Pj =

















a1j

a2j
...

amj

















∈ IRm, for j = 1, 2, . . . , n.

Having clarified all these aspects about the notation of a linear problem in standard form,

we will now detail the name of each of the components of a problem.

Definition 14. In a linear problem of the form:

Optimise z = cx

Subject to Ax = b

x ≥ 0
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we call x the decision variables vector, z is the objective function value, c is the coefficients

vector of the objective function, b is the independent terms vector in the constraints and A is the

technological coefficients matrix.

In principle, the problem is rarely presented in standard form since the constraints are

frequently due to inequalities rather than equalities. Any linear programming problem, how-

ever, can be transformed into a problem in standard form equivalent to the original one, by

simply making small changes in its structure so that it can be solved by the simplex algo-

rithm. We will now study the appropriate procedures for transforming a linear problem into

its equivalent in standard form.

Slack and surplus variables

If any of the constraints of a linear problem is a “≤” or “≥” type of inequality, then the

problem is not in standard form. If the i − th constraint is of the type “≤” , to transform

that inequality into an equality, we add to the left side of the inequality a new non-negative

variable, xh
i , which will measure the difference between the left and the right parts of the

constraint. This new variable is called slack variable. If, however, the i − th constraint is

of the “≥” type, in order to convert that inequality into an equality, we subtract from the

left part of the inequality the variable xh
i , which is called surplus variable. Slack and surplus

variables are included in the objective function with coefficient 0.

Example 15. Let’s consider the problem:

Max 7x1 + 5x2

s. t. 4x1 + 3x2 ≤ 240

2x1 + x2 ≥ 100

x1, x2 ≥ 0

To express it in standard form, we introduce a new variable in each constraint, adding it to
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the first constraint since it is type “≤”, and subtracting in the second one since it is type

“≥”. We add these variables to the objective function with coefficient 0.

Max 7x1 + 5x2

s. t. 4x1 + 3x2 ≤ 240

2x1 + x2 ≥ 100

x1, x2 ≥ 0

∼

Max 7x1 + 5x2 + 0xh
1
+ 0xd

2

s. t. 4x1 + 3x2 + xh
1

= 240

2x1 + x2 − xd
2
= 100

x1, x2, x
h
1
, xd

2
≥ 0

Negative independent term

If the independent term of a constraint is negative, it is just necessary to multiply the con-

straint by −1 so that it has a positive independent term.

Example 16. Let’s consider the problem:

Max 7x1 + 5x2

s. t. 4x1 + 3x2 ≤ −240

2x1 + x2 = −100

x1, x2 ≥ 0

we will obtain an equivalent linear problem in standard form. Firstly we will convert the first

constraint into an equality by introducing a dummy variable, after which the independent

terms of both constraints will be positive:
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Max 7x1 + 5x2

s. t. 4x1 + 3x2 ≤ −240

2x1 + x2 = −100

x1, x2 ≥ 0

∼

Max 7x1 + 5x2

s. t. 4x1 + 3x2 + xh
1
= −240

2x1 + x2 = −100

x1, x2, x
h
1
≥ 0

∼

Max 7x1 + 5x2

s. t. −4x1 − 3x2 − xh
1
= 240

−2x1 − x2 = 100

x1, x2, x
h
1
≥ 0

Once we learn how to transform a problem into standard form we will always work with

problems in standard form.

The process for solving maximisation and minimisation problems are symmetrical. Unless

specified otherwise, we will generally assume that we are referring to a minimisation problem

that we can transform into a maximisation problem considering that:

Min f(x) = −Max [−f(x)].

We will only consider linear problems in standard form where the number of constraints

is less than the number variables, that is m < n, since, if this was not the case, the problem

should be solved trivially or by eliminating redundant constraints in order to arrive at m < n.

We will also assume that the rank of the coefficient matrix is equal to the number of constraints

or rows, that is rg(A) = m, since, if it was rg(A) < m this would mean that there are

redundant constraints which could be eliminated without altering the problem.

If rg(A) = m, then A contains m columns linearly independent. To simplify the nota-

tion, we will assume that m refers to the first columns, P1, P2, . . . , Pm, which are linearly
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independent. Therefore, the set B = P1, P2, . . . , Pm is a basis in IRm since it is formed by m

independent vectors in IRm. The above-mentioned basis is not the only one since for each A

matrix, there are several combinations of columns that form a base in IRm. These bases will

play an essential role in the simplex algorithm. Since the constraints of the problem can be

re-written as x1P1 + x2P2 + · · ·+ xnPn = b, we note that there is a correspondence between

the variables and the columns of matrix A. From this perspective, we will generally talk

about variables associated to columns of the matrix. The variable associated with Pj will be

variable xj .

Definition 17. Given a linear problem, and a basis B in IRm formed by columns in the matrix

A, we call basic columns to those columns in the basis B. We call non-basic columns to those

columns in A which are not in B.

Basic variables are those variables associated to the basic columns in A, and non-basic variables

are those associated to non-basic columns in A.

The consideration of a column (or its variable) as basic depends on the base being taken

into account which could be basic in a certain base and non-basic in another base.

Definition 18. In a linear problem, we say that x = (x1, x2, . . . , xn) ∈ IRn is a basic feasible

solution if it is a feasible solution (that is, if it verifies all the constraints) and if all of its

non-basic variables take on the value 0.

Basic feasible solutions play a fundamental role in linear programming problems because,

as we will see later on, the optimum of the problem (if any) is always a feasible basic solution.

This is because the geometric vertex concept of the feasible region is equivalent to the feasible

basic solution algebraic concept and, as we know, the optimum of a problem is always found

between the extreme points of the feasible region.

Definition 19. The fact that a point is a feasible basic solution implies that its non-basic

variables must be 0, although its basic variables can also be 0. A basic feasible solution with

any null basic variable is called a degenerated feasible basic solution.
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We will use the following notation to describe the simplex algorithm:

• The set of basic indices will be called I and the set of non-basic indices J .

• Let x be a feasible basic solution associated with a B = Pi, i ∈ I basis. Since B is a

basis in IRm, we can write the non-basic vectors as a linear combination of the vectors

of the basis:

Pj =
∑

i∈I

λij Pi , ∀j ∈ J.

The coordinates of the non-basic vectors in relation to a base will frequently appear in

the simplex method and these will be referred to as λij .

Definition 20. Let x be a basic feasible solution associated to a basis B = {Pi , i ∈ I}, and
let λij, with i ∈ I and j ∈ J , the coordinates of the non-basic vectors in B. For each j ∈ J ,

we calculate the values:

zj =
∑

i∈I

ci λij .

Then cj − zj is called reduced cost of the xj variable.

For any basic variable, the reduced cost ci − zi is always 0.

The reduced costs are called this way because the simplex method was initially considered

for minimisation problems where the ci coefficients of the objective function were costs. This

term has been generally adopted for any problem. The reduced cost cj − zj measures the

variation experienced by the objective function when the xj variable is increased by one unit.

This implies that in minimisation problems we will look for those variables with the lesser

reduced cost, while in maximisation problems we’ll look for variables with a greater reduced

cost.

Knowing all the basic elements involved in the simplex algorithm, we will now specify the

steps of this algorithm.
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The simplex algorithm in tabular form

We will now see the various stages of the simplex algorithm by writing all data in a table. At

the same time, we will solve an example to make it easier to understand.

Algorithm (The simplex algorithm).

Given a linear maximisation problem, to solve it using the simplex algorithm in tabular form,

the steps would be as follows:

Step 1. Write the problem in standard form,

Maximise z = cx

Subject to Ax = b

x ≥ 0

in such a way that the matrix of coefficients A contains the columns required for the

canonical base in IRm. Go to Step 2.

Example 22. Let’s consider the problem:

Max z = 2x1 − 3x2

s. t. −x1 + x2 ≤ 2

x1 + x2 ≤ 4

x1 − 2x2 ≤ 1

x1, x2 ≥ 0

(1)

The problem is standard form is:

Max z = 2x1 − 3x2 + 0 xh
1
+ 0 xh

2
+ 0 xh

3

s. t. −x1 + x2 + xh
1

= 2

x1 + x2 + xh
2

= 4

x1 − 2x2 + xh
3
= 1

xi, x
h
i ≥ 0

(2)
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The technical coefficients matrix is

A =











−1 1 1 0 0

1 1 0 1 0

1 −2 0 0 1











When we added the new variables, we introduced the vectors in the canonical basis:

P3 =











1

0

0











P4 =











0

1

0











P5 =











0

0

1











We will see that it is not always possible to obtain the vectors of the canonical base by

including the dummy variables in the problem. We will study later the procedure to follow

in this case.

Step 2. Determine a feasible basic solution associated with the canonical basis. To do this,

we assign to each basic variable the value of the independent term bi (and to each non-basic

variable the 0 value). Go to Step 3.

Since the canonical base in our example is formed by columns P3, P4, P5, we must assign

to the variables related to these columns the values of the independent terms:

xh
1
= 2, xh

2
= 4, xh

3
= 1 .

That is, we consider the solution x = (0, 0, 2, 4, 1). It is easy to confirm that this point is, in

fact, a feasible solution since all of its components are non-negative and verify the constraints

of the problem, since:

− x1 + x2 + xh
1
= 0 + 0 + 2 = 2

x1 + x2 + xh
2
= 0 + 0 + 4 = 4

x1 − 2x2 + xh
3
= 0− 2 · 0 + 1 = 1
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This is also a feasible basic solution since it contains only 3 non-null components and these

are related to linearly independent columns.

Step 3. Write the problem data in tabular form in the following manner:

• All the coefficients of the objective function go in the first row.

• All the vectors forming the basis are placed in the first column which we will call “Basis”.

• In a second column, which we call CB, we place the coefficients of the objective function

corresponding to the basic variables.

• Then, going by columns, we place λik coordinates of all the Pk vectors of the technical

coefficient matrix with respect to the basis. Since we are considering the canonical basis,

these coordinates will be precisely the coefficients of each Pk in matrix A.

• On the right, in a column which we will call RHS, we place the values of the basic

variables of the feasible basic solution under consideration.

• In the last row of the table we place the reduced costs, cj − zj , that will be calculated

in the following step.

• In the bottom right-hand box, we place the value of objective function, z.

So, assuming that the vectors of the canonical base are {P1, . . . , Pm}, the table would look as

follows:

c1 . . . cm · · · cn

Basis CB P1 · · · Pm · · · Pn RHS

P1 c1 λ11 · · · λm1 · · · λn1 b1
...

...
... · · · ... · · · ...

...

Pm cm λ1m · · · λmm · · · λnm bm

cj − zj z =
∑

ci bi
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The initial table of the example that we are solving is:

2 −3 0 0 0

Basis CB P1 P2 P3 P4 P5 RHS

P3 0 −1 1 1 0 0 2

P4 0 1 1 0 1 0 4

P5 0 1 −2 0 0 1 1

cj − zj z = 0

Step 4. Calculate cj − zj in the following manner: cj are the coefficients of the objective

function which were placed in the first row. Then, zj is the result of adding the products

of the basic coefficients of column CB to the coefficients λij of the corresponding column Pj .

Observing the sign of the reduced non-basic costs, we would have one of the following cases:

a) If there are any cj − zj > 0 , select the j to make cj − zj the greater of the positive cj − zj .

The Pj vector will become part of the basis. Go to Step 5.

b) If cj − zj < 0 applies to all non-basic j indices, then the feasible basic solution considered

is the optimal and the only solution. The optimal value of the objective function is the

one in bottom right-hand box. END.

c) If cj − zj = 0 for any non-basic j and cj − zj < 0 for the remaining non-basic j, then

the feasible basic solution considered is an optimal solution, although there are other (and

therefore, infinite) optimal solutions. To obtain the remaining solutions, go to Step 5.

The reduced cj − zj costs of our example are as follow:
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c1 − z1 = 2− [0 · (−1) + 0 · 1 + 0 · 1] = 2

c2 − z2 = −3− [0 · 1 + 0 · 1 + 0 · (−2)] = −3

c3 − z3 = 0− (0 · 1 + 0 · 0 + 0 · 0) = 0

c4 − z4 = 0− (0 · 0 + 0 · 1 + 0 · 0) = 0

c5 − z5 = 0− (0 · 0 + 0 · 0 + 0 · 1) = 0

Note that, the differences ci − zi associated with the basic variables are 0. We complete

the table by including the reduced costs:

2 −3 0 0 0

Basis CB P1 P2 P3 P4 P5 RHS

P3 0 −1 1 1 0 0 2

P4 0 1 1 0 1 0 4

P5 0 1 −2 0 0 1 1

cj − zj 2 −3 0 0 0 z = 0

We are in case (a) of Step 4, since there are reduced non-basic positive costs. The greater

positive cj − zj of the non-basics (and, in fact, the only one) is 2, corresponding to the j = 1

index. Therefore, the P1 vector comes into the basis.

Step 5. Once selected index j in the previous step, observe the coordinates λkj in column

j. We are now looking at one of the following cases:

a) If there is any λkj > 0 coordinate, select the Pk vector that provides the minimum of

expressions xk/λkj (that we call ratio), with λkj > 0. Go to Step 6.

b) If all the coordinates are λkj < 0 then the problem has no solution because it has unlimited

improvement. END.
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Given that the vector selected to go into the the basis is P1, we observe the column

corresponding to this vector. We find ourselves in section (a) of this stage since there is a

positive λk1 coordinate (the second and third of P1 are positive). The ratios are 4/1, 1/1,

where 1/1, the lowest ratio, corresponds to the P5 row. Therefore, vector is excluded P5 from

the basis.

Step 6. Replace vector Pk (from Step 5) with the Pj vector (from Step 4). Make the

appropriate transformations in the table per row (including all the coordinates λij and the

coefficients of theRHS column) so that the vector corresponding to the canonical base appears

in the Pk column. Go back to Step 4.

hen, in the base, we change the P5 vector and replace it with the P1 vector. It is necessary

to convert the P1 column in the vector which is missing in the canonical base, that is, in the

vector










0

0

1











To achieve this, we perform the following operations per row:

• What we want is for the third coordinate of P1 to be 1 and it is already a 1 so, therefore,

we do not change the third row.

• To change the first coordinate of P1 to 0, we add the elements of the third row to those

in the first row.

• To change the second coordinate of P1 to 0, we add the elements of the third row to the

second row.
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2 −3 0 0 0

Basis CB P1 P2 P3 P4 P5 RHS

P3 0 0 −1 1 0 1 3

P4 0 0 3 0 1 −1 3

P1 2 1 −2 0 0 1 1

cj − zj z = 2

It is important to perform the transformations in the order indicated above, achieving, in

the first place, a 1 in the coordinate corresponding to row k and column k, and then zeros in

the other rows, taking k as a reference or pivot, or otherwise, we will lose the other vectors

of the canonical base when we make these transformations.

We go back then to Step 4. The new cj − zj appear in the following table:

2 −3 0 0 0

Basis CB P1 P2 P3 P4 P5 RHS

P3 0 0 −1 1 0 1 3

P4 0 0 3 0 1 −1 3

P1 2 1 −2 0 0 1 1

cj − zj 0 1 0 0 −2 z = 2

We are in case (a) of Step 4, since these are non-basic reduced positive costs. The greatest

non-basic positive (in fact, the only one) of cj − zj is 1, which corresponds to P2. This vector

enters the basis. The only lambdakj coordinate is the one corresponding to P4 and, therefore,

this is the vector which is outside the base. To obtain the vector of the canonical basis:











0

1

0











in column P2 we need to perform the next operations:
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• Divide the second row by 3.

• Add 1/3 of the second row to the first row.

• Add 2/3 of the second row to the third row.

The following simplex table is then:

2 −3 0 0 0

Basis CB P1 P2 P3 P4 P5 RHS

P3 0 0 0 1 1/3 2/3 4

P2 −3 0 1 0 1/3 −1/3 1

P1 2 1 0 0 2/3 1/3 3

cj − zj 0 0 0 −1/3 −5/3 z = 3

In this step, the non-basic cj−zj are all negative. We found the optimal solution in section

(b) of Step 4. The basic components of this solution are the values appearing in the RHS

column, that is, x1 = 3, x2 = 1, xh
1
= 4 (they have to be organized according to the basic sub-

indices) and 0 in the non-basic components, that is, optimal basic feasible is x∗ = (3, 1, 4, 0, 0).

In terms of the initial variable of the problem, this means that the objective function takes

its maximum value when x1 = 3 and x2 = 1, and this maximum value is z = 3. The fact

that xh
1
= 4, that is, that the slack variable of the first constraint is not 0 means that the first

constraint does not become saturated (has 4 dummy units), whereas the second and third

constraints do become saturated (no dummy units) since xh
2
= xh

3
= 0.

Example 23 (Only one solution). We are going to solve the problem of the furniture factory.

Max z = 7x1 + 5x2

s. t. 4x1 + 3x2 ≤ 240

2x1 + x2 ≤ 100

x1, x2 ≥ 0

43



Business Mathematics II, 2nd G.A.D.E., 2012/13 B.Cobacho

Bear in mind that solving the problem graphically, we found that the optimal solution was

to produce x1 = 30 tables and x2 = 40 chairs, with an optimal profit of 410 m.u. Let us see

how we arrive at a solution with the simplex algorithm. The problem in standard form is:

Max z = 7x1 + 5x2 + 0xh
1
+ 0xh

2

s. t. 4x1 + 3x2 + xh
1

= 240

2x1 + x2 + xh
2
= 100

xi, x
h
i ≥ 0

The initial simplex table is then:

7 5 0 0

Basis CB P1 P2 P3 P4 RHS

P3 0 4 3 1 0 240

P4 0 2 1 0 1 100

cj − zj 7 5 0 0 z=0

The non-basic vector which delivers the highest cj − zj is P1. This vector enters the basis.

The minimum of the 240/4, 100/2 ratios is given by vector P4. This vector goes outside the

basis.

In order to have P1 as the





0

1



 in the canonical basis, we divide the second row in two

and subtract from the first twice the value of the second row.

7 5 0 0

Basis CB P1 P2 P3 P4 RHS

P3 0 0 1 1 −2 40

P1 7 1 1/2 0 1/2 50

cj − zj 0 3/2 0 −7/2 z=350

Vector P2 enters the basis and vector P3 exits.
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7 5 0 0

Basis CB P1 P2 P3 P4 RHS

P2 5 0 1 1 −2 40

P1 7 1 0 −1/2 1/2 30

cj − zj 0 0 −3/2 −1/2 z=410

All the non-basic cj − zj differences are negative. We cannot improve the objective and,

therefore, the problem has a single solution in point x1 = 30, x2 = 40. The maximum value

of the objective function is 410. The fact that both slack variables are null means that both

constraints become saturated, that is, all the available manpower hours, both carpentry and

paint, are used up.
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