

Hoja de Problemas 6. Espacio Vectorial Euclídeo

- 1. Califique cada afirmación verdadera o falsa. Justifique cada respuesta.
 - a) $\langle \vec{v}, \vec{v} \rangle = ||\vec{v}||^2$.
 - b) Para cualquier escalar $\lambda \in \mathbb{R}, \langle \vec{v}, \lambda \vec{w} \rangle = \lambda \langle \vec{v}, \vec{w} \rangle$.
 - c) Si la distancia de \vec{v} a \vec{w} es igual a la distancia de \vec{v} a $-\vec{w}$, entonces \vec{v} y \vec{w} son ortogonales.
 - d) Para una matriz cuadrada A, los vectores de la forma $A \cdot \vec{v}^T$ son ortogonales a Ker(A).
 - e) Si los vectores $\vec{v}_1, \ldots, \vec{v}_p$ generan un subespacio W y si \vec{v} es ortogonal a cada \vec{v}_j para $j = 1, \ldots, p$, entonces $\vec{v} \in W^{\perp}$.
 - $f) \langle \vec{v}, \vec{w} \rangle \langle \vec{w}, \vec{v} \rangle = 0.$
 - g) Si $\|\vec{v}\|^2 + \|\vec{w}\|^2 = \|\vec{v} + \vec{w}\|^2$, entonces \vec{v} y \vec{w} son ortogonales.
- 2. Demuestre que si \vec{v} es ortogonal a \vec{v}_1 y a \vec{v}_2 , entonces \vec{v} es ortogonal al subespacio generado por \vec{v}_1 y \vec{v}_2 .
- 3. Encuentre en cada caso la proyección ortogonal de \vec{v} sobre el subespacio generado por los vectores ortogonales \vec{v}_1 y \vec{v}_2 .
 - a) $\vec{v} = (-1, 4, 3), \vec{v}_1 = (1, 1, 0), \vec{v}_2 = (-1, 1, 0);$
 - b) $\vec{v} = (6, 3, -2), \vec{v}_1 = (3, 4, 0), \vec{v}_2 = (-4, 3, 0);$
 - c) $\vec{v} = (-1, 2, 6), \ \vec{v}_1 = (3, -1, 2), \ \vec{v}_2 = (1, -1, -2);$
 - d) $\vec{v} = (6, 4, 1), \ \vec{v}_1 = (-4, -1, 1), \ \vec{v}_2 = (0, 1, 1);$
- 4. Escriba el vector \vec{v} como suma de un vector del espacio generado por \vec{v}_1 y \vec{v}_2 y otro del subespacio ortogonal.
 - a) $\vec{v} = (1, 3, 5), \vec{v}_1 = (1, 3, -2), \vec{v}_2 = (5, 1, 4);$
 - b) $\vec{v} = (-1, 4, 3), \ \vec{v}_1 = (1, 1, 1), \ \vec{v}_2 = (-1, 3, 2);$
- 5. Sean $\vec{v} = (4, 8, 1)$, $\vec{v}_1 = (2/3, 1/3, 2/3)$, $\vec{v}_2 = (-2/3, 2/3, 1/3)$ y W el subespacio generado por $\{\vec{v}_1, \vec{v}_2\}$. Calcule la proyección de \vec{v} sobre W.
- 6. Sea $W = (\{(1,1,1), (1/3,1/3,-2/3)\})$. Construya una base ortonormal para W.
- 7. Calcular los subespacios ortogonales a:
 - a) $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$

- b) $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0, x_1 x_2 = 0\}.$
- c) $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 x_2 + x_3 = 0, x_1 x_3 = 0\}.$
- 8. Sea V un espacio vectorial sobre el cual se tiene definido un producto escalar $\langle \cdot, \cdot \rangle$ de forma que para la base $B = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ se verifica:

$$\langle \vec{v}_1, \vec{v}_1 \rangle = 1, \qquad \langle \vec{v}_1, \vec{v}_2 \rangle = 1, \qquad \langle \vec{v}_1, \vec{v}_3 \rangle = 0,$$

$$\langle \vec{v}_2, \vec{v}_2 \rangle = 3, \qquad \langle \vec{v}_2, \vec{v}_3 \rangle = 1, \qquad \langle \vec{v}_3, \vec{v}_3 \rangle = 1.$$

Se pide calcular:

- a) El producto escalar de los vectores $\vec{v} = (1, 3, -1)$ y $\vec{w} = (1, -1, 1)$, así como el ángulo que forman.
- b) Una base ortonormal a partir de B.
- c) El valor de α para que el vector $\vec{v} = (\alpha, 1, 0)$ sea unitario.
- d) El valor de α para que los vectores $\vec{v} = (\alpha, 1, 0)$ y $\vec{w} = (\alpha, -1, -1)$ sean ortogonales.
- 9. Calcular las ecuaciones de las siguientes aplicaciones lineales $T: \mathbb{R}^3 \to \mathbb{R}^3$:
 - a) La proyección de base $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 0\}$ y dirección $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2 = x_3\}.$
 - b) La simetría de base $\{(x_1,x_2,x_3)\in\mathbb{R}^3:x_1=0\}$ y dirección $\{(x_1,x_2,x_3)\in\mathbb{R}^3:x_1=x_2=x_3\}.$
 - c) La homotecia de razón 1/2.
- 10. Calcular las ecuaciones de las siguientes aplicaciones lineales $T: \mathbb{R}^2 \to \mathbb{R}^2$:
 - a) El giro de ángulo π .
 - b) La proyección ortogonal con base $\{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}.$
 - c) Las homotecias de razones 1/2, 4 y π .