Mathematics for Business I

1^{st} G. A. D. E. – Group A – 2011/12

Exercices Unit 1

- 1. In \mathbb{R}^3 , let's consider $\overrightarrow{u_1} = (2, -1, 1)$ and $\overrightarrow{u_2} = (1, -3, 2)$.
 - a) Write, if possible, vector $\vec{u} = (1, 7, -4)$ as a linear combination of $\vec{u_1}, \vec{u_2}$.
 - b) Write, if possible, vector $\overrightarrow{v} = (2, -5, 4)$ as a linear combination of $\overrightarrow{u_1}, \overrightarrow{u_2}$.
 - c) Find a value for k so that the vector (1, k, 5) is a linear combination of $\overrightarrow{u_1}, \overrightarrow{u_2}$.
- 2. Calculate the values of α , β , γ for which the vector $(\alpha + 2\beta, \gamma 4\beta, -7, -\alpha 3\beta) \in \mathbb{R}^4$ is a linear combination of the vectors (0, 2, 1, -2) y (-1, 0, -4, 0) with coefficients -3 and 1 respectively.
- 3. Calculate the values of the parameter α for which the vectors $\vec{v_1} = (-\alpha, \alpha + 1, \alpha)$, $\vec{v_2} = (0, 1, 2)$ and $\vec{v_3} = (1, -\alpha, 0)$ are independent.
- 4. Prove that the vectors (1, a, b), $(0, 1, a) \neq (0, 0, 1)$ are independent for any values of the parameters $a, b \in \mathbb{R}$.
- 5. In \mathbb{R}^2 let's consider the vectors $\vec{e_1} = (1, -2)$ and $\vec{e_2} = (-2k, 4k)$. Calculate, if possible, one value for k so that the vectors $\{\vec{e_1}, \vec{e_2}\}$ are a basis in \mathbb{R}^2 .
- 6. Solve the next questions.
 - a) In \mathbb{R}^2 , study if the vectors $S = \{(-1, 1), (0, -2), (1, 2)\}$ are L.I. or L.D. Study if they are a generating system in \mathbb{R}^2 . If S is not a basis in \mathbb{R}^2 use the vectors of S to build up a basis in \mathbb{R}^2 , if possible.
 - b) In \mathbb{R}^3 , study if the vectors $S = \{(-1, 0, 0), (0, 0, 2), (-2, 1, -1), (0, -1, 0)\}$ are L.I. or L.D. Study if they are a generating system in \mathbb{R}^3 . If S is not a basis in \mathbb{R}^3 , use the vectors of S to build up a basis in \mathbb{R}^3 , if possible.
 - c) In \mathbb{R}^4 , study if the vectors $S = \{(1, 0, 0, 0), (-1, 0, 2, 0), (-1/3, 1/3, 1, 0)\}$ are L.I. or L.D. Study if they are a generating system in \mathbb{R}^4 . If S is not a basis in \mathbb{R}^4 , use the vectors of S to build up a basis in \mathbb{R}^3 , if possible.
 - d) Choose five vectors in \mathbb{R}^4 . Study if they are L.I. or L.D. Study if they are a generating system in \mathbb{R}^4 . If they are not a basis in \mathbb{R}^4 , use those vectors to build up a basis in \mathbb{R}^2 , if possible.

- 7. Consider $A = \{(1,1), (2,-1), (-3,-2)\}$ in \mathbb{R}^2 . Is it a generating system in \mathbb{R}^2 ? Is it a basis?
- 8. Consider the vectors $\overrightarrow{u} = (1, 4, 0)$, $\overrightarrow{v} = (5, 0, 1)$ in \mathbb{R}^3 . Calculate one vector $\overrightarrow{u_1}$ being a linear combination of \overrightarrow{u} , \overrightarrow{v} , and one vector $\overrightarrow{u_2}$ that is not a linear combination of them. Is it possible to complete the set $\{\overrightarrow{u}, \overrightarrow{v}\}$ to build up a basis in \mathbb{R}^3 ? If yes, calculate a basis in \mathbb{R}^3 including \overrightarrow{u} and \overrightarrow{v} .
- 9. In \mathbb{R}^3 , consider the vectors $\overrightarrow{v_1} = (k, 0, 1), \ \overrightarrow{v_2} = (0, -1, 1), \ \overrightarrow{v_3} = (0, 1, k), \ \overrightarrow{v_4} = (1, 0, 0),$ where $k \in \mathbb{R}$ is unknown. Answer the next questions:
 - a) Are $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}, \overrightarrow{v_4}\}$ a basis in \mathbb{R}^3 ?
 - b) Does exist any value of k so that the vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ are a basis in \mathbb{R}^3 ? If yes, specify all the values of k.
 - c) Does exist any value of k so that the vector $\overrightarrow{v_3}$ is a linear combination of the vectors $\overrightarrow{v_1}$ and $\overrightarrow{v_4}$? If yes, specify all the values of k.
- 10. In \mathbb{R}^3 , look for an example (if possible) in the next cases. You must justify your answers.
 - a) A group of independent vectors.
 - b) A group of dependent vectors.
 - c) A group of dependent vectors being generating system in \mathbb{R}^3 .
 - d) A group of independent vectors that are not a generating system in \mathbb{R}^3 .
 - e) A group of three independent vectors that are not a basis in \mathbb{R}^3 .
- 11. Study for which values of $\alpha, \beta \in \mathbb{R}$ the vectors (1, -1, 0), $(2, 1, \alpha)$ and $(3, 0, \beta)$ are a basis in \mathbb{R}^3 .
- 12. Say if the next sets are vector subspaces. When the set is a subspace, calculate its dimension, two vectors belonging to S, two vectors out of S, and a basis in S.
 - a) $S = \{(x, y, z) \in \mathbb{R}^3 / x = y = z\}$
 - b) $S = \{(x, y, z, t) \in \mathbb{R}^4 / z = 0\}$
 - c) $S = \{(x, y, z, t) \in \mathbb{R}^4 / z = 1\}$
 - d) $S = \{(x, y, z) \in \mathbb{R}^3 / x = y z\}$
 - e) $S = \{(x, y, z) \in \mathbb{R}^3 / y \cdot z = 0\}$
 - f) $S = \{(x, y, z) \in \mathbb{R}^3 / x \cdot y = 1\}$
 - g) $S = \{(x, y, z) \in \mathbb{R}^3 / x + y = 1, z = 0\}$
 - h) $S = \{(x, y, z) \in \mathbb{R}^3 \mid x y = 0, z = 2x\}$
 - i) S is the set of vectors in \mathbb{R}^3 that are dependent to the vector $\overrightarrow{u} = (1/3, 0, 0)$.
- 13. Consider the vectors (1, 0, 5), (a, -3, b), (0, -3, 2), where a and b are unknown real numbers.

- a) Study what must a and b verify in order that those vectors are a basis in \mathbb{R}^3 .
- b) Calculate the equation/s of the subspace with basis $\{(1, 0, 5), (0, -3, 2)\}$.

14. Consider the vectors $\overrightarrow{u_1} = (1, 1, 1)$ and $\overrightarrow{u_2} = (1, 3, -2)$.

- a) Are they independent, dependent, or nothing?
- b) Are they a generating system in \mathbb{R}^3 ?
- c) Calculate the equation/s of the subspace with basis $\{\overrightarrow{u_1}, \overrightarrow{u_2}\}$.
- 15. Calculate the equation/s of all the vectors verifying the next two conditions: (a) The vector belongs to $S = \{(x, y, z) \in \mathbb{R}^3 / x y = 0\}$. And (b) The vectors are linear combination of the vectors (1, 1, 1) and (1, 2, 2).
- 16. Consider $S = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}.$
 - a) Calculate the dimension of S.
 - b) Calculate two vectors in S being linearly independent..
 - c) Let T be the set formed by all vectors in \mathbb{R}^3 verifying that the third component equals the addition of the first component plus the second one. Calculate one basis in the set of vectors belonging to S and T (that is to say, one basis in $S \cap T$).
- 17. When analyzing the cash flow of a firm, the next quantities (measured in Euros) are considered:
 - x = money received from transactions carried out during the current month
 - y = money received from transactions carried out during the last month
 - z = payments for transactions carried out during the current month
 - t = payments for transactions carried out during the last month

Consider the set of all the combinations of quantities producing a cash flow of $+1000 \in$. Is it a vectorial subspace in \mathbb{R}^4 ? Which should be the cash flow so that the set is a subspace?

- 18. Say if these sentences are true or false, and why. When the answer is "false", find a counter-example to show your reasons.
 - a) Every generating system in \mathbb{R}^n is a basis in \mathbb{R}^n .
 - b) In \mathbb{R}^n we can find n+2 independent vectors.
 - c) If \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^3 are independent, then any vector in \mathbb{R}^3 is a linear combination of \overrightarrow{u} and \overrightarrow{v} .
- 19. Say if the next maps are linear maps. When the map is a linear map, calculate its matrix.
 - a) The map $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ such as f(x, y, z, t) = (x + t 1, y z).
 - b) The map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ such as $f(x, y) = y^2 x$.
 - c) The map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such as f(x, y) = (y, 0).

- d) The map $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ such as f(x, y, z) = (2x, y xz).
- e) The map $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ such as f(x, y, z) = (2x, y z).
- f) The map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ such as f(x, y) = (x + 1, 2y, x + y).
- g) The map $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ such as $f(x, y) = \begin{vmatrix} x & y \\ 1 & 2 \end{vmatrix}$.

20. For any linear map $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$, the kernel of f is defined as the set

$$\operatorname{Ker}(f) = \left\{ \overrightarrow{u} \in \mathbb{R}^n / f(\overrightarrow{u}) = \overrightarrow{0} \right\} \,.$$

In the case of the map f(x, y, z) = (-x + z, y + 2z), its kernel is Ker $(f) = \{(x, y, z) \in \mathbb{R}^3 / f(x, y, z) = (0, 0)\}$. Calculate the equations of Ker(f), its dimension and a basis.

- 21. Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}$ be the linear map defined as f(x, y, z, t) = x + t. Calculate the equations of Ker (f) (read the definition in the previous exercise), its dimension and a basis.
- 22. It is known that the kernel (defined two exercises before) of a linear map $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ is the subspace Ker $(f) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 + 2x_2 + 3x_3 = 0, x_1 - x_3 = 0\}$. Calculate the analytical expression of f, its matrix, the dimension of the kernel, and a basis.
- 23. Consider a linear map $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ such as f(1,0,0) = (1,1), f(0,1,0) = (-1,0) and f(0,0,1) = (-2,3). Calculate:
 - a) f(-1, 2, 5).
 - b) All the vectors in \mathbb{R}^3 with image (0, 1).
- 24. Solve the next questions.
 - a) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear map such as

 $f(1,0) = (2,1,0), \quad f(2,1) = (4,0,2),$

Calculate the matrix of f associated to the canonical basis.

b) Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear map such as

$$f(1,-1) = (1,1,0), \quad f(-2,1) = (0,0,2),$$

Calculate the matrix of f associated to the canonical basis.

- 25. Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ be a linear map such as f(1, 0, 0, 0) = (0, -1, 1), f(0, 1, 0, 0) = (0, 0, 1), f(0, 0, 0, 0) = (1, 0, 0), f(0, 0, 0, 1) = (1, -1, 0).
 - a) Calculate the matrix of f.
 - b) Calculate the image of the vector $\overrightarrow{u} = (-1, 1, 0, 2)$.
- 26. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear map such as f(1,0) = (2,1,0) y f(0,1) = (-1,1,1). Calculate the analytical expression of f. Find a vector $\overrightarrow{v} = (x,y)$ with image $\overrightarrow{u} = (1,2,1)$.

- 27. Let $f : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be a linear map such as f(1,0,0) = (1,0), f(0,1,0) = (-1/2,0), f(0,0,1) = (0, -a + 1), where $a \in \mathbb{R}$ is an unknown parameter. Calculate the matrix of f. Calculate a taking into account that f(-1, 10, 1) = (-6, 1/3).
- 28. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear map such as f(1,0) = (-2,0,1) and f(0,1) = (1,1,0).
 - a) Does exist any non null vector in \mathbb{R}^2 with image (0, 0, 0)?
 - b) Consider the vector $\overrightarrow{v} = (1, -3, 5)$. Calculate, if possible, one vector $\overrightarrow{u} \in \mathbb{R}^2$ such as $f(\overrightarrow{u}) = \overrightarrow{v}$.