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Unit 2
DIAGONAL MATRIXES. QUADRATIC FORMS

In this topic, we will deal with linear maps butlprithose in which the initial vectc
space is the same as the final ¢(f : IR” — IR". These types of linear maps are ca

endomor phisms,

As we already know, any linear n and in particular endomorphism is alwz:
associated with a matrix that represents it. Tloeegfwe will discuss the properties of
endomorphismf by referring either to it or to its associated nxatvithout making any
distinction. The matrices asscated with endomorphisms are always square matrige:

they have the same number of rows and colu

2.1 Eigenvalues and eigenvectors. Characteristic polynomial

Definition 1. Let f : R” — IR” be an endomorphism andlits associated matrix. W\
say that a vectar € IR" ian eigenvector of f (or an eigenvector ofl) if it is not the
null vector and in addition, there is a real num\ € IR such thatf(u) = A, or
equivalently, A - 7 = \«. The scala ) for which this equality holds true is called f

eigenvalue of f (or of A) associated with tl eigenvectory .

Example 2. Let f:IR* — IR®> be the endomorphism expressed

f(z,y) = (z,2x — 3y). Let us consider the vectu] = (0,1). The following holds true
f(ui) = £(0,1) = (0,-3) = —3(0,1) = —3u;

This means that the vectar] = (0,1) is an eigenvector off with the eigenvalu
/\1 = —3

Let us now consider the vectuj = (0,5) (note that it is pyportional to u_{). The

following holds true for its imag

f(us) = £(0.5) = (0.—15) = =3(0.5) = —3u}
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i.e., the vector@ is also an eigenvector with an eigenve\; = —3.

It is easy to see that any other vector that ipgnional to the preceding vectors is &

eigenvectors with eigenvalug = —3.
Now consider the vectos] = (2,1). The following holds true for its imag
fo) = f2 1) =21 =121 =17

i.e., the vectoi{ is an eigenvector ¢ f with aeigenvalue\, = 1. And just as before, ar
vector being proportional ta; will also be an eigenvector with the same eigers
)\2 = 1

Property 3. An eigenvector has a unique associated eigenvalue. Howeveigenvalu

has an infinite number of associated eigenvec

Definition 4. A set consisting of the null vector together withthe eigenvectors of &
eigenvalue)\ is called thegen subspace associated with the eigenvalieand we will
denote it byH (\) .

H\) ={u e R"/ f() = \u}
Or, using the associated matt
HN={d eR"/A- W = \U}

These sets may always be expressed as homogemearsiquations and therefore, t

are vector subspaces, as their name indi

Property 5. Eigen subspaseare vector subspac.

Example 6. We will now proceed to calculate tleigen subspaseof the endomorphis
in the example abovef(z,y) = (x,2x — 3y), whose eigenvalues we already kn
/\1 =-3 and/\g =1.

H(=3)={" e R*/ f() = -3}
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l.e., we have to calculate the vectors for which #yuation(z, 2z — 3y) = —3(z,y)

holds true, i.e.:

T = —3x

20 — 3y = —3y

Taking the first equation, it follows thx = () and substituting this value into the sect
equation, we would be left wit— 3y = —3y or equivalently0 = 0, which is a trivial
equality that adds nothing to the system of equatid’ herefore, theigen subsice
associated with the eigenvaltig = —3 is:

H(-3)={(r.y) e R* /2 = 0.
Let us now consider the subspace of another eiggam A\, = 1.
H(l)={d e R*/ f(u) = 1- U}

l.e., we have to calculate the vectors for whioh ¢lquatior (z, 22 — 3y) = (x, y) holds

true, i.e.:

T =X

20 -3y =y
The first equation is trivial. #®®m the second equation we on x = 2y. Therefore
the eigen subspaessociated with the eigenval\; = 1is:
H(1) ={(z,y) e R* /2 =2y.

In practice, when calculating the eigenvalues oéadomorphist, we will perform this

task by calculating the roots of a polynomial whied now proceed to defin

Definition 7. Let f:IR" — IR" be an endomorphism and let be its associate
matrix. Thecharacteristic polynomial of f (or of A) is defined as the determinant
the matrix A — Al , wherd is the identity matrix (a matrix with 1 on its maiimagonal
and O elsewhere).
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p(A) = [A = Al

In order tofind the characteristic polynomial, it sufficessobtract the paramet from
the elements on the main diagonal A, and calculate the determinant of the resul

matrix.

Example 8. Let us consider the endomorphism in the example val

f(z,y) = (x,2x — 3y). Its assoiated matrix in the canonicbasis is

1 0
A pum—
2 =3
The characteristic polynomial
1—A 0
p(\) = =(1=XN)(=3=-N)=X+21-3
2 =3-A

Note that the degree of the polynomial is 2, whis the size of the matrix or tf
dimension of the vector space where the endomarptisdefined (2 in this case). Tt

always occurs.

Property 8. The degree of the characteristic polynomial musinagde with the
dimension of the vector space where the endomarpiesdefined and with the size
the associated matrix.

Property 9. The eigenvalues are the roots of the clteristic polynomial.

Example 10. In the example above, the roots of the characiepstiynomial are\; = 1
and \, = —3, i.e., the eigenvalues ' f are \; = 1 and\, = —3, as we saw previousl
and there is no other eigenve, since the characteristic polynomial only hasse two

roots.

When the matrix is diagonal, then calculation oé tbharacteristic polynomial
extremely straightforward and no calculation ned¢dsbe performed to find tr

eigenvalues, since they are precisely the elenmentse main diagonal of the ftrix.
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Property 11. The eigenvalues of a diagonal matrix are the elésnenm the mail

diagonal.

0
Example 12. Let us examine this property with the malA = , Which is a
0 5

diagonal matrix. Its characteristic polynomial P()\) = (-1 — A)(5 — ) whose roots

are \; = —1 and\, = 5, which arethe elements that were on the main diagc

In order to study the diagonalization of a matmext section) we will need to use |
multiplicity of an eigenvalue, which is simply thaultiplicity of the root of the

polynomial.

Definition 13. Let A be aneigenvalue of an endomorphisth We use the terr
multiplicity of A, and we denote it tm()), to refer to the multiplicity of the eigenval
as a root of the characteristic polynomial, i.ette number of factors that anni\ in
the factorized charactetis polynomial.

Example 14. Let us suppose that we have the characteristicnpatjal of a matrix o
size 4, p(\) = (—2—)1)*(5—\). It follows that the eigenvalues arg = —2, with
multiplicity m(\,) = 3, and Ay = 5, with multiplicity m(),) = 1.

2.2 Diagonal matrixes

In the previous unitwhen we tudied linear mapswe did so only by referring to tt
associged matrix in the canonical bs, because this made the calculations easiel
because the canonical basis is the one that idlysisad in any vector space. Howev
this does not mean thte associated matrix is only defined for the cacairbasis. I
any basis is considere#, = {u], @}, .. .. u;}, the matrix associated with a linemap f
in suchbasis is calculated by placing the coordinatesefitnages of the vectors of t
basis f(uf), f(u3), ..., f(u,) in its columns, jus as we did with the canonical ba

vectors. This Bows us to define the concept of diagonalizablérima
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Definition 15. Let f: R* — IR" be an endomorphism and let be its associate
matrix in a basi®. We say th: f (or A) is diagonalizable if there exists dasis inIR" in

which the associated matrix bis a diagonal matrix, i.e. has the form

M 0O o 0
D=] 0 X\ --- 0
0 0 - A\,

In this diagonal matrix, the elemer); on the main diagonal are the eigenvalue f.
They do not all have to be different, i.e. thereyrba repeated eigenvaluen the main
diagonal. Also, they can be 0.

The following result tells us that when an endorhasm is diagonalizablewe cat find a
basis inIR” made up of eigenvectors f. This is precisely the basis in which the ma

associated witly is a diagonal maix.

Property 17. An endomorphism is diagonalizable if and only i€ ttimension of eac
of its eigen subspasecoincides with the multiplicity of the correspamgl eigenvalue
i.e. if for each eigenvalug;, the equatiordim H();) = m();) holds true In this case,
the basign which the matrix is diagonis calculated by joining the basof the eige

subspacesn the same order in which the eigenva appear in the associated diagc

matrix.

In practice, if an endomorphism is diagonalizable, order to find the bis of
eigenvectorsjt suffices to calculate the eigenvalues of the cemorphism,then the
dimensions of its associated ei subspaces (which coincide with the multiplicitytbé
eigenvalue) and theas many eigenvectors as indicatedthe dimensionin total, we
will obtain a basis of the entire vector sp.

Example 18. Let us examine whether the following matrix is diaglizabl« or not.

1 3 2
A= 0 -1 3
0 01
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Its characteristic polynomial iP(\) = (—1-\)(1—\)* and its eigenvalues ai
A; = =1 with multiplicity m; = 1, and 1, = 1 with multiplicity m, = 2. In order to
examine whether it is diagonalizable, we must dateuthe associated ei¢ subspaces
associated with both eigenvalues and see whethkedimensions coincide witthe

multiplicities.
Let us begin withl; = —1,
Its associated eigen subsp@eH (—1) = { e R*/ A-u = —1-u}

i.e. the vectors of/(—1) ra the vectors verifyin

1 3 2 x T
0 -1 3 ||y l|l="-11gu
0 0 1 z z

And written as a system of equatior

r+3y+2z =—x
—y+3z =—y
z =-—z

The third equation tells us thz = 0. Replacinghis value into the seconduation, we
obtain — y = —y, which does not add any information to the sy. And finally, we

obtainz = —32 4 from the first equatiol

Therefore, H(-1)={(z,y,2) e R’ /o =—-2y, 2=0}. Its dimension i
dim H(—1) = 1, which coincides with the multiplicity of the elpealue,m(),) = 1.

Let's nowexamine whether the samecurs with the other eigenvalug; = 1.
Its associated eigesubspace iH(1) = {7 ¢ R* / A-u=1-u}

i.e. the vectors of{ (1) are the vectors for which the following holds tr
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1 3 2 T T
0 -1 3 ||y |=11]wy
0 01 z z

And written as a system of equatior

r+3y+2z =v
—y+3z =y

z

Il
w

The third equation adds no information to the systémrking on th second equatiol
we obtainy = 2 = , andeplacin(this into the first equation: + § = + 2z = z, in which

z = 0 and thereforey = (0 and there is no restriction fz.

Therefore, H(1) = {(2,y,2) e R* /y =0, 2 =0}. Its dimension isdim H(1) = 1,
which does not coincide with the multiplicity ofetleigenvaluc), = 1 and consequdly,

matrixA is not diagonalizable.

Although we performed the calculations with theeeigalue \;, which has multiplicity 1
there was actually no need to do, because for all the eigenvalues with multiplicity
the equality between the dimension ce subspace and multiplicity is alweverified, as

explained in the followingesul.

Note 19. A diagonal matrix is the simplest example of a dizgizable matrix, ecause it

is itself its own diagonal form (it is alreadiagonalized).

Property 20. The dimension of aeigen subspade always a number larger or equa
1, and less or equal to the multiplicity of the eigalme: 1 < dim H(\;) < m()\).
Therefore, when the uftiplicity of the eigenvalue is the equalityH (\;) = m()\;) =1

will always be verified.

Henceforth, when examining whether a matrix is dragjaable, itwon’'t be necessary f
check if that equality iterified in the case of eigenvalues with multiplicity 1 (@sg w
are expressly asked to do, since we already know that this property is alw
fulfilled.
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Therefore, if all the eigenvalues of a matrix hawdtiplicity 1, we will besure that it is

diagonalizablewithout having tccheck the dimensions of the eigabspaces

Property 21. If all the eigenvalues of an endomorphi f (or its associated matri: A)
have multiplicity 1, thenf (orA) is diagonalizable.

Next, we will observe certain properties of symneetnatrices that make them a spe

case, sine they are all diagonalizable

2.2.1 Symmetric matrices

As we already know, it may be that a character@ignomial has roots that are not r

numbers, as occurs in the following examg

Example 22. Let f : R" — IR” be the endomorphism expressed gy, y) = (—y, x).

Its associated matrix in the canonical bas

01
-1 0

And its characteristic polynomial P(\) = A? + 1, which has no real roots

Matrices that are symmetric (the matrix in the eglarabove is not) are characterizec
the fact that this never occurs, i.e. all the r of the characteristic polynomial of
symmetric matrix are always real numbers. In addjtiwe may affirm that a symmet

matrix is always diagobalizab

Property 23. All the roots of the characteristic polynomial ofsgmmetric natrix are

always real numbers, and alflmmetric matrices are diagonalizal

Diagonal matrices (whiclare diagonalizable), constitute a special catesymmetric
matrices Remember that in order to calculate the eigemsbf a diagonal matrix, it
not necessary to perform any calculation becauseeigenvalues arprecisey the
elementon the main diagonanor is it necessary to do anything in order to dradize

them,since they themselves are already diagonal mat
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2.3 Quadratic forms. Classification.

Definition 24. A quadratic form in IR” is a functionQ) : R” — IR @ is applied on
vector and its image is a real numbwhose analytical expression is a homoger

polynomial of degree 2.

Example 25. Q(z,y,z) = 22* — 2y + 3yz — z* is a quadratic form since it is

homogeneous polynomial (with 3 variables) of de@.

Qs(z,y,2) = 22* — 2y + 3yz — 2 + 7 is not a quadratic form since although it i

polynomial of degree 2, it is not homogenec

Qs3(z,y,2) =22* — zyz + 3yz— 2* is not a quadratic form because is not a

polynomial of degree 2, but rather of deg3.

Definition 26. The analyticalor polynonial expression of any quadratic form may
calculated by multiplying theectoi of variableg(in the form of a row), by symmetric
matrix, and then bthe variables vectcagain (in the form of a column):

€

Q(x1, 29, ..., x,) = (21,29, ..., x5) - A | a4

This matrix is called thenatrix associated with the quadratic form Q.

In practice, it is easy to find the associated matriwe know theanalytica expression
and vice versa. In ordé¢o obtain the matrix starting out from the analyt expression c
a quadratic form, the coefficients of the variablgised to the second power are pla
on the main diagonand the coefficient of the terux;x;, divided by 2js placed on th
remaining positionsi, j). If you cannot remember this rule, all you havel®ois to find
the images of the vectors of the canonical basts @ace them in the columns of
matrix. In order to obtain the analytical expressstarting out from the matrix,

suffices © write the elements of the main diagonal as treffictents of the variable
raised to the second power and the terms of th&igos(i, j) multiplied by 2 as th

coefficients of the terms;z;

10
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Example 27. We will now proceed to calculate the matrix asseciwith the quadratis
form Q,(z,y, 2) = 22* — 2y + 3yz — 2%

We place the coefficients of, y* andZ on the main diagonaivhich are 2, 0 an-1
respectively. In positions (1,2nd (2,1), we place the coefficient of (variables land
2) divided by 2, i.e.— 1/2. In positions (1,3) and (3,1), we place the ceoéffit thal
multiplies the product:z (variables 1 and 3) divided by 2, i.e. 0. Finally,positions
(2,3) and(3,2), we place the coefficielof y- (variables 2 an@) divided by 2, i.e

Therefore, the matrix associated w(Q) is:

1
2 —1 0
— 1 3
A= -3 0 3
3
0 2 -1
T

We can see that whew,y,z)- A- | ¢ | is multiplied, we obtain precisely tl

z

expressior2z? — zy + 3yz — 2? that defines the quadratic form.
Property 28. The matrix associated th a quadratic form is always a symmetric ma

Property 29. Since the matrix associated with a quadratic fasnalways a symmetr
matrix, and all symmetric matrices are diagonalizable, way nconclude that a
quadratic forms (or their matrices) areagonalizable. The analytical express
associated with the corresponding diagonal madricalled thediagonal expression of a
quadratic form. This diagonal expression will ohBve addends with variables raisec

the second power (it will not have ms such as;z; ).

Definition 30. According to the sign of the results of a quadrétion  : R” — IR,
these are classified in the followiway.

« We say that) ipositive semidefinite if Q(7) > 0for any i € IR™,

« We say thaty ipositive definite if Q() > Ofor any 7 € R", i +# 0.

11
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 We say that) isegative semidefinite if Q(7) < 0 for any ¥ € IR™.
« We say thaty isegativedefiniteif Q() < 0forany € R", i # 0.

* We say that) isndefinite or has any sign if it takes both positive and nieg:
values, i.e.Q(W) >0 for a certain ¥ € R" , andQ(7) <0 for a certair
7 e R

Avoid this frequent error: It is frequent to be confused with the meaning
“indefinite”. Indefinite doesrt’ mean than we dct know the sign of thejuadratic form

on the contraryit does mean tit we know that its sigis positive and negativ

Note 31. We can considerhe null matrix aspositive semidefinite and negati

semidefinite at the same time.

We will now study two criteri¢hat will help us to knowhe sign of a quadratic form
Property 32 (Method of eigenvalues to analyze the sign of a quadratic form).

Let \;, \o, ..., \, be the eigenvalues of a symmetric maA € M,,,. The following

holds true:

1. A is positive definite if and only if\; >0,Vi=1,2,...,n, i.e. all the

eigenvalues are positive.

2. H is positive semidefinite if and only \; > 0, Vi = 1,2,...,n and there exisl
an eigenvalue\; = 0, i.e. if all the eigenvalues are positive and ¢hexists a nul

eigenvalue.

3. A is negative definite if and only itA\; <0,Vi=1,2,...,n, i.e. all the

eigenvalues are negati\

4. Ais negative semidefinite if and only \; <0, Vi =1,2,....n and there exisl
an eigenvalue\; = 0, i.e. if all the eigenvalues are negative andefexists a nul

eigenvalue.

5. A is indefinite if and only if there exists an eigaiwe A\; > 0 and an eigenvalu

A; < 0, i.e. if there exists a positive eigenvalue ameé@ative eigenvalu

12
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Example 33. Let Q(x,y, 2) = —22* + 4xz + 22°. Its associated matrix is

-2 0 2
A= 000
2 0 2

The eigenvalues of this matrix are 2v/2 and — 2v/2 . Since it has Ho positive anc

negative eigevalues, its quadratic form is indefini

We can also see this with an example, sQ(1,0,0) < 0 and@(0,0,1) > 0.

The second criterion that we can use to examinsigreof a quadratic form based on

the first minors of its associated ma, which we will now proceed to defin

Definition 34. Given a symmetric matriA € M,,.,, (i.e. with . rows and. columns).

apy daiz - Qip

21 daz -+ A2
A= ,

nl Ap2 -+ Opn

the following succession of determinants are defia® thefirst minors of A:

A1= ail

11 12
A2:

Q21 22

11 di2 Q13
Az = Qo1 d22 QA23

31 a3z A33

a1 Az - Qp

@21 Q22 -+ Q2p
A, = | A| =

Ap1 Ap2 *° App

13
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Property 35 (Method of first minorsto analyze the sign of a quadratic form).

Let Q : IR” — IR be a quadratic form A its associated matrix and,, A,,..., A, the
first minors of A .

1.  is positive definite if and only if all the first imors are greater than
Ay >0,A,>0,...,4,>0.

2. () is positive semidefinite if and only if all the ¢t minors are greater than
except for the last one, which is equal tt4;, >0, A, >0,..., 4,1 >0,4,=0

3. Qis negative definite if and only if the first mirsochange sign alternately start
from negative:d; < 0, A, > 0, A3 < 0.... Another way of looking at it is that tl

odd order minors must be rative and the even order minors must be posit

4. () is negative semidefinite if and only if the firsimars change sign alternate
starting from negative (i.e. the odd order minams @egative and the even ori

minors are positive) and the lastnoris 0: A, <0, A, > 0,43 <0..., A, =0.

5. If none of paragraphs (-(4) is fulfiled and in additionA, # 0, then Q is
indefinite.

6. If none of paragraphs (-(4) is fulfiled and in additionA4, =0 but all the

preceding minors are different from 0, tr(¢) is indefinite.

In any other cse not contemplated in the cases above, we caseadhismethod to
discover the sign of the quadratic form and instéla€l eigevalues criterion must k

used.

Avoid this frequent error: This method is frequently used wngly because of tw
reasons. Onefdhem is the case when a quadratic form d’t verify any of the poits 1
to 6; in this case, we caat say the quadratic form is indefinite, you mastead ue the

method of the eigenlizes (see example 3

The other case consist mrixing this method with the other on&Vhilst with the
method of the eigenvalue$ doesn’t matterthe order in which we compute t

eigenvalues, ine method of fst minors you mustonsider the order of the min.

Example 36 Let Q(x,y,2) = —22* + 4az + 222 Its associated matrix is

14
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A= 000
2 0 2

The first minors arel; = —2 < 0, A, = 0, A; = 0. It does not coinde with any of the
cases contemplated in the first minors criterionclwhmeans that in this case, we car
use the first minors criterion. Instead, we muse tise eigenvalues criterion. T
eigenvalues of this matrix are 2v/2 and — 2v/2 and therefore its quratic form is

indefinite.

Note 37. The advantage of the first minors criterion is titauffices to carry ouva few
simple calculations (calculate soideterminants)but its disadvantage is that it does
cover all possible cases. On the contrary, thenemue criterion has the advantage
covering all the existing possibiliti, but the disadvantage of having to calculate
characteristic polynomial and its eigenvalues. Gheice of whether to use one criter

or another will dependn each case.

2.4 Quadratic formswith restrictions

Up to now, we have studied the sign of a quadfatit defined throughotIR™, but on
many occasions, our interest for the quadratic fda®s not lie through the entire ver

space, but rather in a syiage. This is the situation that we will studyhistsection.

Property 38. Reasonin@boutthe sign of a quadratic form, we may reach theofaihg

conclusions.

1. If a quadratic form igositive definite throughoulR”, if it is restricted to

subspaceb, it will also be positive definite i S.

2. If a quadratic form is negative definite throughdR”, if it is restricted to

subspacé, it will also be negative definite 5.

3. If a quadratic form is posve semidefinite throughouR"”, if it is restricted to

subspace5, it may be positive definite, positive semidefndr null.

15
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4. If a quadratic form is negative semidefinite thrbagt IR", if it is restricted to :

subspace5 |, it may beegative definite, negative semidefinite or r

5. If a quadratic form is indefinite throughcIR™, if it is restricted to a subspa.s, it

may take any sign.

Method to studyhe sign of a quadratic forQ restricted to a subspadée

» Step 1. If amongst the equations that define the subs.S' there is an equatic
that is linearly dependent on the remaining equatiat is eliminated and on
those equations that are linearly independent ansidere (you can study thi
with the rank of thecoefficien matrix). Find as many variables as possible (t

variables and equations

» Step 2. Replace the values found for the variables into the ga@acform Q. This
will give rise to a new quadratic for g, that will have less variables (if we he

found and replasd values fo k variables, the; will have variables less

» Step 3. Examine the sign of the quadratic foq usingthe eigenvalues method

the minors method.

Example 40. Examine the sign of the quadratic foQ(z, y, z) = 2* — zy + 2* for those

vectors verifying the equation+ y = 0.

We are being asked to examine the sig ¢ not throughoutIR® but only in the

subspaces = {(x,y,2) € R® /2 +y = 0}.
To do this, we find the value of x in the equati. = —y. Then we replaceto (:

q(y, 2) = (—y)* = (—y)y + 2> = 2y° + 2*

This quadratic form is clearly positive definiteNevertheless, we will checit by

2 0
operating with its associated matiA = . Since it is a diagonal matrix,

0 2

eigenvalues are the elements on the main diago@a®, and 1. Since they are all gre:
than 0,q is positive definite. i.e., the quadratic fo () is positive definite in the subspa
S.

16



