UNIVERSIDAD POLITÉCNICA DE CARTAGENA

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA CIVIL

EJERCICIOS DE TECNOLOGÍA MINERALÚRGICA. EJERCICIOS DE MOLINOS DE IMPACTOS Y PERCUSIÓN

1.- Una planta de fabricación de áridos desea instalar un molino primario de impactos en su planta de procesamiento con el fin de triturar caliza; caracterizada, según los ensayos de laboratorio, por un índice de trabajo o índice de Bond de 10 y un índice de abrasión de 0.001. La producción de la planta debería ser capaz de recibir unas 300 t/h de material procedente del frente de explotación.

El vertido se realizará a través de camión a tolva de alimentación. El tamaño máximo de la alimentación será de 825 mm, y el D_{80} de 500 mm. Se quiere obtener un producto con un d_{90} igual a 150 mm.

Con la información anterior y con los datos técnicos del fabricante se pide:

- Potencia teórica del motor exigida al equipo.
- Seleccionar el equipo más adecuado de los ofertados por el fabricante.
- Cantidad de material producido de 35 mm.
- Cantidad de material 20/35 mm producido.
- Tamaño máximo de producto.

Solución:

<u>Respuesta l</u>

	mm	200	150	100	80	60	50	40	30	25	20	15
d ₈₀ —	315	100	100	100	100	100	100	100	100	100	100	100
	250	97	100	100	100	100	100	100	100	100	100	100
	200	90	98	100	100	100	100	100	100	100	100	100
	150	80	90	100	100	100	100	100	100	100	100	100
	125	72	83	97	100	100	100	100	100	100	100	100
	100	63	74	90	97	100	100	100	100	100	100	100
	80	54	66	81	90	98	100	100	100	100	100	100
	63	46	57	72	82	92	96	100	100	100	100	100
	60	45	55	70	79	90	95	99	100	100	100	100
	50	40	48	62	72	82	90	96	100	100	100	100
	40	32	41	55	63	73	82	90	97	100	100	100
	31.5	29	34	47	54	64	74	82	92	96	100	100
	30	28	33	46	52	61	72	80	90	95	99	100
	25	24	28	40	46	54	65	74	84	90	96	100
	20	20	24	34	40	46	57	66	76	84	90	97
	16	17	20	29	34	40	50	58	67	74	83	92
	15	16	19	28	33	38	48	56	64	72	80	90
	12.5	14	17	24	29	34	42	50	58	64	74	82
	10	11	14	20	24	29	37	44	50	56	64	68
	8	9	12	17	20	25	32	39	44	49	56	60
	6.3	7	10	14	17	21	28	34	38	42	48	53
	5	6	9	12	14	18	24	30	33	37	42	46
	4	5	8	11	13	16	21	26	29	32	37	40
	2	4	5	7	9	11	15	17	20	23	25	29

la columna que cumple la condición del enunciado es la segunda por la izquierda. Una vez seleccionada esta columna deberemos buscar el valor del d80 que habrá que obtenerlo por interpolación:

$$90\% - 83\% \rightarrow 150 - 125mm$$

 $90\% - 80\% \rightarrow 150 - x$

Lo que nos dará un valor de do igual a 114.29 mm.

A continuación introduciríamos en la primera expresión de Bond todos los datos conocidos para darnos un valor de Pa igual a 52.45 kW. Ahora, se multiplicaría por un factor de 1.6 para llegar al valor de la potencia teórica motor:

$$Pm = 1.6 \times 52.45 = 83.92 \text{ kW}$$

Respuesta 2

Con el valor anterior iríamos a la siguiente tabla de características técnicas para elegir el modelo más adecuado, siendo éste aquel que presenta una potencia inmediatamente superior a la potencia motor calculado. Pero, teniendo en cuenta que el tamaño máximo de alimentación será de 825 mm, esto sólo nos deja la posibilidad de escoger el modelo NP1313 con una potencia de 200 kW.

 Modelos	Boca de alimentación	Tamaño o Max. de alimentación	Velocidad max. de rotación	Potencia	
NP1007	750 x 800 mm	500 mm	800 rpm	90 kW	
NP1110	1020 x 820 mm	600 mm	800 rpm	160 kW	
NP1213	1320 x 880 mm	600 mm	700 rpm	200 kW	
NP1315	1540 x 930 mm	600 mm	700 rpm	250 kW	
NP1520	2040 x 995 mm	700 mm	600 rpm	400 kW	
NP1210	1020 x 1080 mm	800 mm	700 rpm	160 kW	
NP1313	1320 x 1200 mm	900 mm	700 rpm	200 kW	
NP1415	1540 x 1320 mm	1000 mm	600 rpm	250 kW	
NP1620	2040 x 1630 mm	1300 mm	500 rpm	400 kW	
NP2023	2400 x 1920 mm	1500 mm	500 rpm	1000 kW	

<u>Respuesta 3</u>

En la primera tabla buscamos porcentaje de paso para el valor de 35 mm; el cual habrá que obtenerlo por interpolación, siendo éste igual a 36.88%, luego:

Respuesta 4

En la primera tabla buscamos el valor de 20 mm al cual le corresponde un porcentaje de paso del 24%, luego:

$$300 + ph \times 0.13 = 39 + ph (20/35 mm)$$

<u>Respuesta 5</u>

Tamaño máximo del producto:

Se busca en la primera tabla el tamaño para el cual le corresponde el 100% de paso. En nuestro caso sería el tamaño de 250 mm (dmax)