Laboratorio de Comunicaciones

Mezcladores con elementos activos

Fernando D. Quesada Pereira¹

¹Departamento de Tecnologías de la Información y las Comunicaciones Universidad Politécnica de Cartagena

5 de marzo de 2010

Índice de Contenidos

- Introducción
- Generadores de Corriente
- Amplificador diferencial como modulador de AM
- Doble amplificador diferencial en contrafase

Características generales

Amplificador diferencial

 Para realizar las modulaciones AM, DBL y BLU, se suelen utilizar mezcladores con elementos activos, además de las realizadas con diodos (elementos pasivos).

Características

- La calidad de los mezcladores es mayor con elementos activos como transistores.
- Los mezcladores que utilizan elementos activos están basados en el amplificador diferencial (mezcladores equilibrados).
- $V_1 V_2 = V_{BE_1} V_{BE_2}$ (ya que existe una referencia común).
- Si los transistores están en activa la corriente de colector I_c y emisor I_e son casi las mismas.

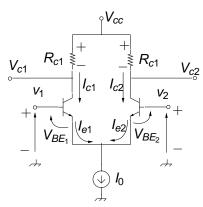


Figura: Amplificador diferencial

Amplificador diferencial

Análisis del circuito I

- El generador de corriente impone $I_0 = I_{E_1} + I_{E_2}$
- En el camino cerrado (lazo) entre las 2 entradas se cumple la ley de las tensiones de Kirchoff.

$$V_1 - V_2 = V_{BE_1} - V_{BE_2}$$

 $V_{BE_1} = V_1 - V_2 - V_{BE_2}$

El diodo base-emisor está polarizado en directo, y su respuesta (I-V) es:

$$I_{E_1} = I_{E_S} e^{\frac{qV_{BE_1}}{kT}} \simeq I_{C_1}$$
 $I_{E_2} = I_{E_S} e^{\frac{qV_{BE_2}}{kT}} \simeq I_{C_2}$

Definición de constantes y variables

- I_{ES} es la corriente inversa de los diodos (valor pequeño próximo a cero). Si los transistores son iguales la corriente es la misma en los dos.
- $k = 1,3806530 \cdot 10^{-23}$ (J/K) es la constante de Boltzmann.
- $T = 290 \, \text{K}^{\circ}$ es la temperatura ambiente.
- $q = -1,602564 \cdot 10^{-19}$ (C) es la carga del electrón.

Amplificador diferencial

Análisis del circuito II

• La corriente de colector es prácticamente la misma que la de emisor ($I_{C_1} \simeq I_{E_1}$), $I_{C_2} \simeq I_{E_2}$.

$$egin{aligned} V_{BE_1} &= V_1 - V_2 + V_{BE_2} \ I_{E_1} &= I_{E_S} e^{rac{q}{kT} V_{BE_2}} e^{rac{q}{kT} (V_1 - V_2)} \ I_{E_1} &= I_{E_2} e^{rac{q}{kT} (V_1 - V_2)} \end{aligned}$$

• Por otra parte, la corriente de la fuente es $I_0 = I_{E_1} + I_{E_2}$, $I_0 = I_{E_2} \left(1 + e^{\frac{q}{kT}(V_1 - V_2)} \right)$. Despejando para los dos transistores, tenemos las relaciones:

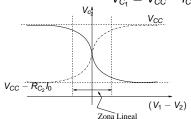
$$I_{E_2} = rac{I_0}{1 + e^{rac{q}{kT}(V_1 - V_2)}} \simeq I_{C_2}$$

$$I_{E_1} = rac{I_0}{1 + e^{-rac{q}{kT}(V_1 - V_2)}} \simeq I_{C_1}$$

Amplificador diferencial

Análisis del circuito III

- Los voltajes de salida se toman en los colectores (V_{C_1} y V_{C_2}).
- Por el lema de las tensiones de Kirchoff (lazos) se tiene para las dos salidas:


$$V_{CC} = I_{C_1} R_{C_1} + V_{C_1}$$

 $V_{CC} = I_{C_2} R_{C_2} + V_{C_2}$

La señales de tensión de salida son:

$$V_{C_{2}} = V_{CC} - I_{C_{2}}R_{C_{2}} = V_{CC} - \frac{R_{C_{2}}I_{0}}{1 + e^{\frac{q}{kT}(V_{1} - V_{2})}}$$

$$V_{C_{1}} = V_{CC} - I_{C_{1}}R_{C_{1}} = V_{CC} - \frac{R_{C_{1}}I_{0}}{1 + e^{-\frac{q}{kT}(V_{1} - V_{2})}}$$

$$V_{CC} = V_{CC} - I_{C_{1}}R_{C_{1}} = V_{CC} - \frac{R_{C_{2}}I_{0}}{1 + e^{-\frac{q}{kT}(V_{1} - V_{2})}}$$

Valores asintóticos

- Si $-(V_1 V_2) \uparrow \uparrow$, $e \to \infty$, $V_{C_2} = V_{CC}$.
- Si $(V_1 V_2) \uparrow \uparrow$, $e \rightarrow 0$, $V_{C_2} = V_{CC-R_{C_2}}$.

Ganancia en la zona lineal del amplificador diferencial

• Para $(V_1 - V_2)$ pequeño el amplificador es lineal, y su ganancia se puede obtener hallando la pendiente (derivada) en la zona lineal.

$$g = \frac{dV_{C_2}}{d(V_1 - V_2)} = R_{C_2} I_0 \frac{\frac{q}{kT} e^{\frac{q}{kT}(V_1 - V_2)}}{\left(1 + e^{\frac{q}{kT}(V_1 - V_2)}\right)^2} \quad \text{g genérica (cualquier } V_1 - V_2)$$

• En la zona lineal, al ser $(V_1 - V_2)$ pequeño, la exponencial se puede aproximar por la unidad (primer término de su desarrollo de Taylor, $e^x \simeq 1 + x + \ldots$), resultando la ganancia:

$$g \simeq \frac{dV_{C_2}}{d(V_1 - V_2)} \simeq R_{C_2} l_0 \frac{\frac{q}{kT}}{4} = \frac{q l_0 R_{C_2}}{4kT}$$
 g lineal $(V_1 - V_2 \text{ pequeño})$

Variación con la corriente de fuente

- Si se aumenta el valor de l_0 (corriente de fuente) crece la ganancia.
- En el límite, si l₀ ↑↑, lc₁ ↑↑, la caida de tensión en Rc₁ ↑↑, y el colector deja de ser positivo respecto a la base. La tensión en bc (base-colector) deja de estar en inversa y el transistor no está en la zona activa.

Consideramos el amplificador diferencial de la figura, que es la base de los moduladores activos de amplitud. Se pide:

- Obtenga la curva de transferencia que da la dependencia de la tensión de salida V_{c_2} , en función de la diferencia de las tensiones de entrada $(V_1 V_2)$. Dibuje aproximadamente la curva de transferencia.
- Encuentre el valor del generador de corriente I₀ para que cuando: V₁ = V₂ = 5V, los transistores entren en saturación (suponer que cuando la unión base-emisor está en directa, su tensión es de 0.7 V). ¿Cuánto vale la tensión de salida V_{c2} en este caso?

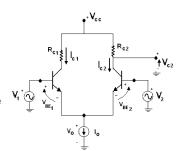


Figura: Amplificador Diferencial.

Seguidor de emisor (*Emitter Follower*)

Primer tipo de fuente de corriente

Análisis del circuito

- Se puede diseñar un generador de corriente con un transistor en seguidor de emisor.
- En la malla se tiene por el lema de Kirchoff de tensiones:

$$V_S = I_B R_B + V_{BE} + V_0.$$

 Por otra parte, se tiene que $V_0 = I_E R_E$. Si el transistor está en activa: $I_C \simeq I_F = \beta I_B$, $V_0 = \beta I_B R_F$. $I_B = \frac{V_0}{\beta R_{-}}$.

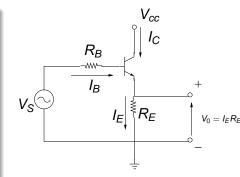


Figura: Seguidor de Emisor

Si se sustituye en la expresión de V_S , se tiene:

$$V_{S} = R_{B} \frac{V_{0}}{\beta R_{E}} + V_{BE} + V_{0} \; ; \; V_{S} = \left(\frac{R_{B}}{\beta R_{E}} + 1\right) V_{0} + V_{BE} \; ; \; V_{S} - V_{BE} = \frac{R_{B} + \beta R_{E}}{\beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{BE}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) \frac{\beta R_{E}}{R_{B} + \beta R_{E}} V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) V_{0} \; ; \; V_{0} = (V_{S} - V_{B}) V_{0}$$

Se tiene que $V_0 < V_S$. Además, si $V_S >> V_{BE}$ y $\beta R_E >> R_B$, entonces $V_0 \simeq V_S$, por lo que la tensión de salida sigue a la

de entrada (seguidor de tensión) ($\frac{\beta R_E}{R_B + \beta R_E}$ < 1). Para V_S fijo, V_0 es fijo, y la corriente $J_E = V_0/R_E \simeq J_0 \simeq V_S/R_E$.

Espejo de corriente

Segundo tipo de fuente de corriente

Análisis de la fuente

- Otra forma de realizar una fuente de corriente es mediante un esquejo de corriente.
- Se tiene que $V_{CC} = I_1 R_1 + V_{BE}$, $I_1 = \frac{V_{CC} V_{BE}}{R_1}$.
- Si $V_{CC} >> V_{BE}$, $I_1 \simeq V_{CC}/R_1 \simeq Cte$.
- En el nodo A se tiene $I_1 = I_{C_1} + I_{B_1} + I_{B_2}$, $I_1 = I_{C_1} + 2I_B$.
- Si los transistores son iguales se tiene (ley exponencial): $I_{B_1} = I_{B_2} = I_B$, $I_{C_1} = I_{C_2} = I_C$, al ser las tensiones V_{BE} iguales por circuito.
- Además, si los transistores están en activa:

$$I_2 = I_{C_2} = \beta I_B, I_{C_1} = I_{C_2} = \beta I_B.$$

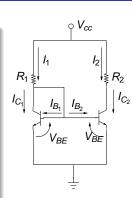


Figura: Espejo de corriente

Sustituyendo se tiene:

$$I_1 = I_{C_2} + 2\frac{I_{C_2}}{\beta}$$
; $I_1 = I_{C_2}\frac{\beta + 2}{\beta}$; $I_{C_2} = \frac{\beta}{\beta + 2}I_1 = I_2$

Si $\beta >> 2$, $I_{C_2} \simeq I_1$ es constante, luego se implementa un generador de corriente.

Generalización del espejo de corriente

La ventaja la configuración de espejo de corriente es que se pueden implementar varios generadores de corriente a la vez.

Análisis del espejo de corriente generalizado

Se tiene que:

$$I_2 = \ldots = I_N = \frac{\beta}{\beta + N} I_1$$

• Si $\beta >> N$, $I_N \simeq I_1$

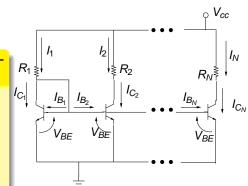


Figura: Espejo de corriente general

Dado el espejo de corriente de la figura adjunta, se pide:

- O Calcule el valor de la resistencia R₁ para que el espejo fije una corriente de valor 1 mA.
- Calcule el valor de la resistencia R₂ para obtener un valor de VCE₂ = 14 Voltios.
- Solution Calcule el valor de las corrientes de base sabiendo que la ganancia en corriente de cualquiera de los dos transistores es: $\beta = 100$.
- Calcule la corriente de colector del transistor Q₁. ¿Cuánto vale VCE₁ en Q₁?
- Diseñe un generador de corriente equivalente al anterior pero en configuración seguidor de emisor.

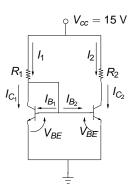


Figura: Generador de corriente en espejo de corriente.

Modulador de AM con amplificador diferencial

Análisis del circuito I

- Se puede utilizar un amplificador diferencial como modulador (mezclador).
- En la zona lineal se sabe que la ganancia es $g = \frac{V_{C_2}}{(V_1 V_2)} = \frac{q_{l_0} R_{C_2}}{4kT}$.
- La tensión de salida en la zona lineal es

$$V_{C_2} = g(V_1 - V_2) = \frac{q l_0 R_{C_2}}{4kT} (V_1 - V_2).$$

La corriente I₀ es de un generador de corriente. Si se consigue que la señal moduladora sea del tipo I₀ = K₀ V_m (caso de las fuentes, V_m moduladora) se tiene:

$$V_{C_2} = \frac{qR_{C_2}}{4kT} K_0 V_m(V_1)$$

 La fuente V_{dc} sirve para polarizar el transistor.

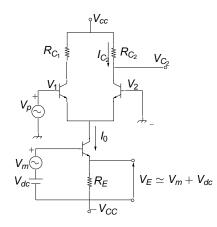


Figura: Modulador de AM con amplificador diferencial.

$$(V_2 = 0, V_1 = V_p, (V_1 - V_2 = V_p))$$
 (portadora).

Modulador de AM con amplificador diferencial

Análisis del circuito II

 La corriente l₀ es proporcional a la señal moduladora.

$$I_0 = \frac{V_m + V_{dc}}{R_E} = \frac{V_{dc}}{R_E} + \frac{V_m}{R_E}$$

$$\begin{split} V_{C_2} &= \frac{qR_{C_2}}{4kT} V_p \left(\frac{V_{dc}}{R_E} + \frac{V_m}{R_E} \right) = \\ &\frac{qR_{C_2}}{4kT} \frac{V_{dc}}{R_E} \left(1 + \frac{V_m}{V_{dc}} \right) V_p \end{split}$$

Si V_m = AX_m, siendo max[X_m] = 1, se tiene:

$$V_{C_2} = \frac{qR_{C_2}}{4kT}\frac{V_{dc}}{R_E}\left(1 + \frac{A}{V_{dc}}X_m\right)V_{\rho}$$

El índice de modulación es
 m = A/V_{dC} (amplitud de la
 moduladora-tensión de polarización).

- Además de la señal de AM aparecen o tras componentes superpuestas como consecuencia de la polarización del amplificador diferencial (común en los mezcladores).
- Si $V_p = 0$, entonces $I_{C_2} = I_0/2$ (las dos ramas iguales).

$$V_{CC} = I_{C_2} R_{C_2} + V_0$$

$$V_0 = V_{CC} - \frac{I_0}{2} R_{C_2}$$

$$V_0 = V_{CC} - \frac{R_{C_2}}{2} \left(\frac{V_{dC}}{R_E} + \frac{V_m}{R_E} \right)$$

$$V_0 = V_{CC} - \frac{R_{C_2}}{2} \frac{V_{dC}}{R_E} - \frac{R_{C_2}}{2R_E} V_m$$

 Aparece una componente espúrea continua y otra a la frecuencia de la moduladora.

Considere el circuito modular de AM mediante amplificador diferencial de la figura. Se pide:

- Describa cuáles son las partes principales del circuito y qué función realizan.
- Obtenga la intensidad de colector l_0 . Encuentre la expresión rigurosa de dicha corriente, para posterior simplificar ésta mediante las aproximaciones pertinentes. Finalmente encuentre el valor numérico.
- ¿Qué sucede si aumenta indefinidamente la corriente I₀? (Justifique la respuesta)
- 4 Calcule la señal de salida del circuito para $V_p = 0$ antes del condesador.
- Calcule la expresión de señal total de salida del circuito antes del condesador C. ¿Qué función realiza el condesador C?.
- Dibuje el espectro de la señal de salida antes y después del condensador C.
- Encuentre la expresión de la modulación AM de salida en la resistencia de carga R_L ¿Cuál es el indice de modulación m? En vista de dicho índice de modulación, determine de que tipo de modulación AM se trata y cuál sería el demodulador más sencillo para detectar la información de la citada modulación.
- Sustituya el espejo de corriente por una fuente de alimentación de tipo seguidor de emisor que entregue la misma corriente I_0 . Justifique el resultado.

Figuras

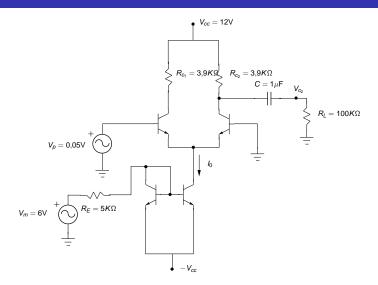


Figura: Modulador AM con amplificador diferencial y espejo de corriente.

Eliminación de las componentes indeseadas

Mezclador de AM con mezclador equilibrado con amplificador diferencial

Componentes espúreas

- Aperecen siempre estas componentes superpuestas aunque no haya portadora.
- Es necesario filtrar para limpiar la señal AM (método I).
- Existe una técnica para eliminar los términos indeseados, basada en la utilización de dos amplificadores diferenciales con fase cambiada (método II).
- La componente V_m sin modular aparece en cada par diferencial cambiada de signo y se anula, con lo que sólo queda la señal modulada (método II).

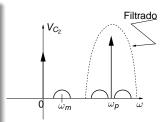


Figura: Modulación AM y componentes indeseadas

- Calcule la ganancia en modo diferencial del amplificador de la figura, y encuentre el valor aproximado de ésta en la zona lineal. ¿Qué sucede si aumenta el valor de I₀?. ¿Se puede incrementar indefinidamente dicho valor? (Razone la respuesta). ¿Cómo calcularía la ganancia en modo común del mismo amplificador?. Diga como ha de ser idealmente esta última ganancia.
- Para modelar la fuente de corriente l₀ se utiliza el circuito de la segunda figura. Diga como se denomina dicho circuito y describa su principio de funcionamiento. Por último, calcule la corriente entregada a través del colector del transistor.
- Mediante la unión de los circitos de las figuras es posible implementar un modulador AM.
 - Dibuje el esquema conjunto que forma el modulador AM.
 - Calcule la tensión de salida del circuito V₀, si V₁ = V_p, V₂ = 0 y V_m = A X_m (siendo max[|X_m|] = 1). ¿Cual es el índice de modulación m?.
 - Si V₁ = 0 y V₂ = 0, ¿qué señal V₀ se tiene a la salida del circuito?.
 ¿Es conveniente la aparición de dicha señal?. ¿De qué forma la puede evitar?.

Figuras

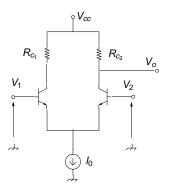


Figura: Esquema de un amplificador diferencial.

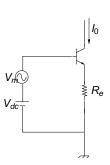


Figura: Circuito fuente de corriente I_0 .

Mezclador doblemente equilibrado. Análisis del circuito I.

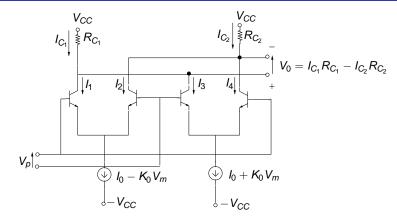


Figura: Doble Amplificador Diferencial en contrafase

Si
$$V_p = 0$$
 se tiene: $I_{C_1} = I_1 + I_3 = \frac{I_0}{2} - K_0 \frac{V_m}{2} + \frac{I_0}{2} + K_0 \frac{V_m}{2} = I_0$ y $I_{C_2} = I_2 + I_4 = \frac{I_0}{2} - K_0 \frac{V_m}{2} + \frac{I_0}{2} + K_0 \frac{V_m}{2} = I_0$.

Análisis del circuito II.

$$V_0 = I_{C_1}R_{C_1} - I_{C_2}R_{C_2}$$
; Si $(R_{C_1} = R_{C_2}) \rightarrow V_0 = R_C(I_{C_1} - I_{C_2})$

Si $V_0 = 0$, desaparecen todas las componentes de continua y a la frecuencia de la moduladora. En cuanto a la modulación

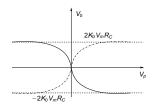
$$V_{C_1} = V_{CC} - I_{C_1}R_{C_1} = V_{CC} - I_{C_1}R_{C}$$
; $V_{C_2} = V_{CC} - I_{C_2}R_{C_2} = V_{CC} - I_{C_2}R_{C}$
 $V_0 = (I_{C_1} - I_{C_2})R_{C}$

Se escriben las corrientes de colector para los cuatro transistores ($V_1 - V_2 = V_p$):

$$I_1 = \frac{I_0 - K_0 V_m}{1 + e^{-\frac{q}{kT}V_p}} \quad ; \quad I_2 = \frac{I_0 - K_0 V_m}{1 + e^{+\frac{q}{kT}V_p}} \quad ; \quad I_3 = \frac{I_0 + K_0 V_m}{1 + e^{+\frac{q}{kT}V_p}} \quad ; \quad I_4 = \frac{I_0 + K_0 V_m}{1 + e^{-\frac{q}{kT}V_p}}$$

Se tiene para las corrientes de la salida V_0 :

$$I_{C_1} = I_1 + I_3 = \frac{I_0 - K_0 V_m}{1 + e^{-\frac{q}{kT} V_p}} + \frac{I_0 + K_0 V_m}{1 + e^{+\frac{q}{kT} V_p}} \quad ; \quad I_{C_2} = I_2 + I_4 = \frac{I_0 - K_0 V_m}{1 + e^{+\frac{q}{kT} V_p}} + \frac{I_0 + K_0 V_m}{1 + e^{-\frac{q}{kT} V_p}}$$


Finalmente, la tensión de salida:

$$V_0 = \left(\frac{I_0 - K_0 V_m}{1 + e^{-\frac{q}{kT} V_\rho}} + \frac{I_0 + K_0 V_m}{1 + e^{+\frac{q}{kT} V_\rho}} - \frac{I_0 - K_0 V_m}{1 + e^{+\frac{q}{kT} V_\rho}} - \frac{I_0 + K_0 V_m}{1 + e^{-\frac{q}{kT} V_\rho}}\right)$$

Agrupando términos:

$$V_0 = R_C \left(\frac{-2K_0 V_m}{1 + e^{\frac{-q}{kT} V_p}} + \frac{2K_0 V_m}{1 + e^{\frac{q}{kT} V_p}} \right) \quad ; \quad V_0 = 2K_0 V_m R_C \left(\frac{1}{1 + e^{\frac{-q}{kT} V_p}} + \frac{1}{1 + e^{\frac{q}{kT} V_p}} \right)$$

Se representa la respuesta de la tensión de salida V_0 en función de la tensión diferencial (V_p) .

Comportamiento asintótico

- $V_p \uparrow \uparrow$, $e^+ \to \infty$, $e^- \to 0$.
- \bullet $-V_n \uparrow \uparrow$, $e^+ \to 0$, $e^- \to \infty$.

Figura: Relación entrada V_0 , salida V_p

Se evalua la pendiente de la curva para calcular la ganancia

$$g = \frac{dV_0}{dV_\rho} = 2K_0 V_m R_C \left[\frac{\frac{-q}{kT} e^{\frac{q}{kT} V_\rho}}{\left(1 + e^{\frac{q}{kT} V_\rho}\right)^2} - \frac{\frac{q}{kT} e^{\frac{-q}{kT} V_\rho}}{\left(1 + e^{\frac{-q}{kT} V_\rho}\right)^2} \right]$$
g genérica (cualquier V_ρ)

Ganancia en zona lineal. Mezcla ideal

Salida del circuito en zona lineal

Si $V_p \simeq 0$ (pequeña), $e^x \to 1$, por lo que:

$$g = \frac{dV_0}{dV_p} = 2K_0V_mR_C\left(\frac{-q}{4kT} - \frac{-q}{4kT}\right) = -2K_0V_mR_C\frac{2q}{4kT} = \frac{K_0V_mR_Cq}{kT}$$

En la zona lineal la ganancia se escribe como:

$$g = \frac{V_0}{V_\rho} = \frac{K_0 R_c q}{kT} V_m$$
 g lineal (V_ρ pequeña)

La tensión de salida en la zona linel será:

$$V_0 = \frac{K_0 R_C q}{kT} V_m V_p$$
 Modulación DBL ideal

Una vez más resulta el producto de dos señales (mezcla ideal), desaparece incluso la portadora, por lo que resulta mejor para modular una doble banda lateral (DBL).

Generadores de corriente para este tipo de moduladores

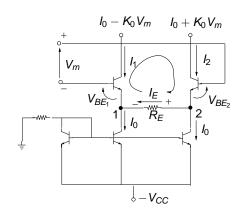


Figura: Fuente de corriente para el doble amplificador diferencial (mezclador doblemente equilibrado).

- Por el lema de las tensiones Kirchoff se cumple $V_m = V_{BE_2} + I_E R_E - V_{BE_1}$.
- I₀ es una corriente constante impuesta por el espejo de corriente.
- Si los transistores son iguales $V_{BE_1} = V_{BE_2}$, y entonces $I_E = V_m/R_E$
- Al final, por el lema de corriente de Kirchoff se tiene:

$$\begin{array}{ll} \text{nodo 1} & \text{nodo 2} \\ I_1 + I_E = I_0 & I_2 = I_0 + I_E \\ I_1 = I_0 - \frac{V_m}{R_E} & I_2 = I_0 + \frac{V_m}{R_E} \end{array}$$

• Se ve que $K_0 = 1/R_E$, y por tanto la salida es ($V_0 = \frac{q}{kT} \left(\frac{R_C}{R_E} \right) V_m V_p \simeq$ $40\left(\frac{R_C}{R_E}\right) V_m V_p$). R_C y R_E controlan la ganancia de la modulación.

- Onsidere el circuito de la primera figura.
 - Diga que denominación recibe el circuito anterior y describa su principio de funcionamiento.
 - Se tienen los valores siguientes para los componentes del circuito: $R_1=6.8k\Omega$, $R_2=50\Omega$ y Vcc=8V. Para todos los transistores utilice $\beta=50$ y $V_{BE}=0.65V$. En base a los datos anteriores, calcule de forma precisa y justificada la intensidad de corriente I_0 .
 - Si $V_m = 1 V$ calcule el valor de la resistencia R_e para que se cumpla la relación $I_2/I_1 = 1,1$.
- El circuito de la primera figura se conecta al representado en la segunda figura.
 - Discuta la función y posibles aplicaciones del circuito conjunto.
 - Calcule de forma justificada el valor de Rc para que la ganancia $g = dV_0/dV_p$ en la zona lineal del anterior esquema sea igual a 100. Para llevar a cabo el cometido anterior, tenga en cuenta los resultados obtenidos en la primera parte del ejercicio y los valores de las constantes q = 1,602e 19C, k = 1,38e 23J/K, T = 293K.

Figuras

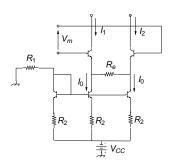


Figura: Primer circuito.

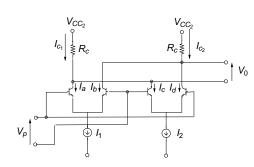
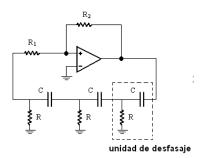



Figura: Segundo circuito.

Vamos a considerar uno de los osciladores montados en el laboratorio, tal y como muestra la figura. Se pide:

- 1 Indique las condiciones matemáticas que tiene que cumplir el circuito para que entre en oscilación. Justifique la respuesta.
- Obtenga la ganancia en lazo abierto del circuito, en función de la frecuencia.
- Suponiendo en primera aproximación que la celda de defasaje unidad mostrada en la figura no se ve afectada por el resto del circuito, calcule el valor de R para que el circuito oscile a 5 KHz (tomar C=18 nF). Razone la respuesta.

