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Unit 2. Convexity and concavity

The convexity and concavity concepts are very useful for finding the maximum and mini-
mum of the functions since these concepts make it considerably easy to reach a mathematical
solution to optimisation problems. We will be able to confirm that convex functions have
special qualities that simplify the search for minimums while concave functions produce the

same results in the search for maximums.

It is important to point out that all functions referred to throughout this chapter will be
scalar functions, f : IR" — IR, that is, functions the result of which is a real value and not

a vector.

1 Convex sets. Convex envelope

The convexity and concavity concept in functions is closely related to the convexity of sets.

This is the reason why we begin by defining and studying the convex sets of IR".

Definition 1. A set A in IR" is a convex set when any segment connecting a couple of points

in A is fully contained in A, that is, all the points of the segment belong to A .

Example 2. The set
A={(z,y) e R* |y <3 -}

is a convex set, since it is easy to confirm graphically (see figure 2) that any segment connecting

two points of A is completely included in A.

Example 3. The set formed by the graphic of any non-linear function is not convexr. This
could be seen, for example, in the figure 3, where the set B = {(x,y) € IR* |y = €*} is

represented.
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Convex set Non-convex set

Figure 1: Convex set and non-convex set

Property 4. The IR" space is a convez set.
Property 5. Intersection of convex sets is a conver set.

Example 6. The set union may or may not be a conver set. For erxample, consider sets
A=Ay € B /2> +y* =1}, B ={(x,y) € B/ (z— 1)+ (y — 1) = 1} and
C = {(z,y) € IR* | 2® +y* = 4}, which are circles in IR>. A, B and C are convex sets. AU DB

is not convex, while AU C' is convex.

Definition 7. We will call hyperplane in IR" the set of points that verify that the linear

equation in IR", that is,

H ={(z1,29,...,2,) € IR" | c1x1 + coxa + - -+ + cpz,, = }

where c1,¢o, ..., cp, 0 € IR and at least ¢; # 0.
Example 8. Straight lines in IR* and planes in IR® are hyperplanes.

Example 9. The set {(z,y,2) € IR* / 3z +y — z = —3} is a hyperplane in IR’.
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Figure 2: A= {(v,y) € R* /y <3 —x}.

Example 10. The sets
{(z,y,2) e R* /2" +y—z=1} and {(z,y,2) € R* / 2zy + 3z =1}
aren’t hyperplanes in IR>.

Definition 11. Let H be a hyperplane in IR". It is possible to define new sets which are called

semi-spaces in IR":
H" = {(z1,29,...,2,) € R" | c171 + co9 + - - + cpxy, > o} (Upper semi-space)
H™ ={(z1,29,...,2,) € R" | c1z1 + cox2 + - - - + cyz, < a} (Lower semi-space)
Example 12. The sets
{(z,y,2) € R* /3z+y— 2> -3} and {(z,y,2) € R* )3z +y— 2 < -3}

are semi-spaces IR®.



Mathematics for Business 11, 2012/13 B.Cobacho

Figure 3: B = {(z,y) € R* /y = ¢*}.

HY ={(z,y) eR? /y > 2+ %

H- ={(z,y) eR?*/y< 3+ 2}

Figure 4: Each hyperplane divides the space IR" into two semi-spaces.
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Definition 13. The intersection of a finite number of semi-spaces in IR" is called polyhedron
(See figure 5).

7
/
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g

Figure 5: Two polyhedrons in the plane.

Property 14. Hyperplanes, semi-spaces and polyhedrons in IR" are all convex sets.

Example 15. A very useful type of set in Linear Programming (which we will study in Unit 3)

are those formed by points of (x1,xs, ..., x,) € IR" the coordinates of which are all greater or

equal to zero and which also fulfil one or several linear equalities or inequalities, for example,

the formed by the points (11,22, 23) € IR® which verify the following conditions:

4
3IL‘1 + SZL‘Q —6fE3 S 5

1
gl’l —3x9 + Tx3 =2

$1ZO, 'IQZO) .I'3ZO
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These types of sets are always convex. To confirm this, let us assume that set A is the one
formed by points (x1,xa,...,2,) € IR" which verify the following conditions (where a;; are

parameters):

1121 + 1929 + - - - + a1, < by

9121 + A99%o + - - - + Gopx, = by

Am1T1 + Am2T2 +-+ AmnTn Z bm

551207 xQZOa R :L‘TLZO

We shall assign a name to the set of points that verify each of the individual conditions:

A = {(x1,20,...,2,) [ a121 + @122 + - - - + a1,2, < b1}
Ay = {(z1,22,...,2n) [/ a21®1 + ago®2 + - - - + ATy = bo}
Am = {(xlax%“'axn)/am1x1+am2x2+"’+amn~xn > bm}

Aerl = {(.%'1,.%'2,...,33'”) /.1'1 Z O}

AerQ = {(.%'1,.%'2,...,1'”)/.1'220}

Apin = {(x1,29,...,2,) /2, > 0}

The points of A are the ones that comply with all conditions simultaneously and as such, they

belong to all the previous sets, and accordingly
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A:AlﬂAgﬂﬂAmﬂAm+1ﬂﬂAm+n,
and given that each set A; is convex (or a hyperplane or a semi-space of IR") it can be deducted
that A is a conver intersection of convex sets.

Definition 16. Given a finite set of points xi,xs,...,xx in IR", a linear combination of
X1, %9, ..., T 0 which all scalars are positive and add up to 1, is called a convex combination,

that is, x 1s a convexr combination of x1,xs, ...,z if there are Ay, Aa, ..., \x € IR such as

.%':)\1.%'1—|—)\2.’L'2+"‘+)\kl'k

and it fulfils Ay +Xa + -+ X =1 and A\, Ao, ..., A\ > 0.

The convex combination of two points x1,xs can be written using a single parameter X:
= A1+ (1 —N)za,

being A € [0, 1].

Definition 17. Given a finite amount of points x1,xs,...,xx in IR", the set formed by all

the possible conver combinations of these points is called convex envelope and is represented

by CE[x1, 2, ..., 2]

M+t A =1

EC(x1,29,...,2k) = § M1 + Xaxo + -+ - + Ay, /
A1>A27"'a)‘k20

The convex envelope of two points x1, o is the segment connecting x1 and x5. Besides calling

it EC(xq,x9) it is usually simply denoted [y, z2).

EC(x1,x9) = [x1, 2] = {Ax1 + (1 = Nz / X € [0,1]}.
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A1Z1 + AaZ2 + A3x3, being T3
Zfzg)\izly)\l,)\%)\?,zo .

A1x1 4+ 0 4+ Agz3, being

Al+A3=1y A,A320 \

Figure 6: Convex envelope of three non-aligned points in a plane.

Example 18. Let us consider three points (0,0),(1,0),(0,1) € IR*. The conver envelope of

these points 1is:

A+ +A3=1

EC[(O,O),(LO)a(O’l)]: )\1(0,0)+)\2(1,0>+>\3(071)/ Mo e >0

AM+X+A3=1
_ (/\27/\3)/ 1 2 3
A1, A2, A3 >0

Determining a point belonging to the convex envelope is as simple as assigning values to the
multipliers A1, Ao, A3 that meet the established requisites. Hence, taking \y = Ay = A3 = % it

can be deduced that
1 1 1 11

— —(1 —(0.1)=1|=, = E 1 1)].
30,00+ 3(1,0)+ 30.1) = (5.3 ) € BCI0.0), (1,010, 1]

In the same manner, given a point of IR?, it is possible to decide whether or not this point

belongs to the convexr envelope. If we take point (1,1), it belongs to the convex envelope if
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)\1"‘)\2"—)\3:1
A1, A2, A3 >0

A1(0,0) 4 Aa(1,0) + A3(0,1) = (Ao, Ag) = (1, 1), with

which is impossible since if \o = A3 = 1, then A\ + Ao + A3 # 1 being \y > 0. Therefore,

(1,1) ¢ ECI(0,0), (1,0), (0,1)].

Example 19. Consider 1 = (1,0, —1) and xo = (0,1,2). The convezx envelope of these two

points, or the segment connecting them, is:

(w1, 22] = {A(L,0, 1) + (1= A)(0,1,2) /A€ [0,1]} = {(\, 1= A, 2—3\) /A € [0, 1]}

To calculate a point of this segment, we just have to give a value of between 0 and 1 to .

For ezample, if we take A = 1/5 we have that x = (£,%,1) is a point in the segment [z, xs).
Whereas, if we want to know whether or not another point y = (%, 0,1) belongs to then convex
envelope, we can check if (A\,1 — X\,2 — 3X), for any XA € [0,1]. To do this, we equalize each

component:

A2
1-XA=0
2—32x=1

There is no solution for this system and, therefore y = (3,0,1) & [x1, z2].

Let us now see if point z = (2, —1, —4) belongs to [r1,xs]. The system

A =2
1—A=-1
2-3\=—4

does have a solution A = 2, however, it is X\ ¢ [0,1], which means that z is not a point in

segment [x1, xa).
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2 Convex and concave functions

Definition 20. A function f : IR" — IR is said to be convex in a set A C IR" if two
conditions are met:
1. A is a convex set.

2. Any segment connecting two points of the graph of the function has all its points on the

graph of the function or on top of it.

Figure 7: Function f(z) = 2%

Example 21. Function f : IR — IR given by f(x) = 2° is a convex function in IR since it

meets the two conditions provided:

1. IR is a convez set.

2. Any segment connecting two points in the graph of the function has all its points in or

above the function’s graph and never below it (See figure 7).

10
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Example 22. Function f : IR* — IR defined by f(x,y) = 2% + y*> — 5 is a convex function
in IR? since it meets the necessary requirements:
1. IR? is a convez set.

2. Any segment connecting two points of the function graph has all its points in the function

graph or above it, never below the graph (See figure 8).

3 5

Figure 8: Function f(z,y) = 2? + y* — 5.

Definition 23. A function f : IR" — IR is said to be concave over a set A C IR" if it meets

two conditions:

1. A is a convex set.

11
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2. Any segment connecting two points of the function graph has all its points on the function

graph or below it.

Figure 9: Function f(z) = —a?.

Example 24. Function f: IR — IR given as f(x) = —x* is a concave function in IR since it

meets the two conditions provided:

1. IR 1s a convezx set.

2. Any segment connecting two points of the function graph has all its points on or below

the graph and never above it (See figure 9).

The convexity and concavity concepts of a function are symmetrical, but not opposites,
that is, a function could be concave or convex or neither one. In fact, in the same function the
two concepts could be combined in different ways. For example, the f(x) = sin(z) is convex
in A = [r,27] and concave B = [0, 7] (note that A and B are convex sets), but is neither

concave nor convex over the entire IR (see figure 10).

12
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MR

Figure 10: Function f(z) = sin(x).

Likewise, a function could be convex and concave simultaneously in the same set. This,

however, only happens with linear functions.

Property 25. The only conver and concave functions over an A set are the linear functions

defined in A.
Example 26. Function f : IR* — IR defined as f(x,y) = 3z —y + 2 is a linear function in

IR* (which is a convex set) and, therefore, f is convex and concave in IR*.

It is evident that if a function is convex over a certain set A, then it is also convex over
a subset of A, provided that this subset is also a convex set. The same applies to concave

functions.

Property 27. If a function is convex or concave over an A set, then this is also convex over

any B C A, provided that B is also a convez set.

The symmetry existing between convexity and concavity concepts means that for each

result over convex functions there is also a symmetrical result over concave functions so

13
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that henceforth, all results will present one property for convex functions and the equivalent

property for concave functions.

& Avoid this frequent mistake: Note that whereas there are two concepts when we speak
of functions: concavidad and convezidad, if we refer to a set, only the converity concept must
be used. A set can or cannot be convex, but there is no such thing as a conjunto cdoncavo,

which is frequently used mistakenly.

The following results are useful on certain occasions to determine the convexity or con-

cavity of a function over a set.

Property 28. If a function f is convex over an A set, then:

1. When multiplied by a positive number o > 0, the resulting function af is also convex

over A.

2. When multiplied by a negative number o < 0, the resulting function o f is concave over

A

Property 29. If a function f is concave over an A set, then:

1. When multiplied by a positive number o > 0, the resulting function af is also concave

over A.

2. When multiplied by a negative number o < 0, the resulting function af is convex over

A

Property 30. If a set of functions is convex over a set A, then the addition of these functions

18 convex over A.

Property 31. If a set of functions is concave over a set A, then the addition of these functions

18 concave over A.

14
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Example 32. Let us confirm if the f(z,y) = 3952—1—% function is convex over IR*. Firstly, we
observe that the fi(z,y) = 2® and fo(x,y) = y* are conver in IR* (see example 21). Applying
the above-mentioned properties, we obtain that 3z* and % are also convex functions over IR
(as they’re convex functions multiplied by positive numbers) and so, its addition, 3z* + % 18

also convex. So we can conclude that f(x,y) = 3z* + % is convex in IR?.

Example 33. Let us consider the following functions:

3 1
g1(x) = §x2 + 3 + )
3 1
g2(x) = §x2 — 3z — )

5 1

= —— 3 -

g3(x) 5% + 3z + 5
Since in ezample 21 we confirmed that f(x) = 2? is a convex function in IR and g(x) = 3z + 3
is a linear function and, therefore, convex over IR (see property 25), we can ensure that g is

convez in IR. Likewise, we can conclude that gy is also a convex function in IR.

On the other hand, —%xZ 18 concave 1 IR, and since 3x + % s a linear function, it’s also

concave in IR. and, accordingly, the sum of these functions, that is gs, is also concave in IR.

In practice, however, the best method to determine the convexity or concavity of a function
over a convex set A, is to study the sign of the Hessian matrix of the function over all the

points of A.

Algorithm 1 (to study the convexity/concavity of a function)

Let f be defined over a set A.

e Step 1. Confirm if A is a convex set. If not, it does not make any sense to talk about

15
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the concavity or convexity of f in A (although we could study it for subsets of A).

e Step 2. Calculate the Hessian matrix H f(z), and study its sign for any x € A. Then:

— If Hf(z) positive semidefinite or definite for all points € A, then f is a convex

function in A.

— If H f(x) negative semidefinite or definite for all points z € A, then f is a concave

function in A.

— Otherwise, f is not concave or convex A.

It is important to point out that the study should be carried out over all the points in the
set. If we find any point where the Hessian matrix isn’t positive semidefinite or definite or

negative semidefinite or definite, then the function would not be convex or concave over the

aforementioned set.

Example 34. In example 22 we showed that f : IR* — IR, defined as f(x,y) = 2° +y? — 5,

is convex in IR*. We would reach the same conclusion using the above-mentioned algorithm.

The Hessian matriz of f at any point (z,y) € IR* is:

2 0
0 2

Hf(x,y) =

Since Hf(x,y) is positive definite at any point (x,y) € IR* and IR* is a convex set, the

conclusion is that f is convex in IR?.

Example 35. Let’s consider function f : IR> — IR, defined as f(z,y) = (v — 2)* + (z —
y)? +300. Its Hessian matriz at any point (x,y) € IR? is

16
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12(x —2)2+2 —2
—2 2

Hf(x,y) =

The minors of H f(x,y) are:

Hy = 12(x — 2)* + 2

Hy = 24(z — 2)?
Since Hy > 0 and Hy > 0 for any (z,y) € IR?, it can be asserted that the matriz is positive

semidefinite in all the points of IR*. Lastly, since IR* is a convez set, we can conclude that f

is a convex function over IR

Example 36. We will study the convezity or concavity of the function f : IR®> — IR, defined

as f(z,y,2) = —(x —2)? — e* + 23. To this end, we calculate its Hessian matriz at any point
in de IR® is:
-2 0 0
Hf(!L',y,Z) - 0 _4€2y 0
0 0 6z

The eigenvalues of H f(x,y, z) are \y = —2, Ay = —4e* and A3 = 6z. For any point (x,y, 2),

the eigenvalues A1 and Ay are negative; nevertheless, the A3 sign depends on the z value:

o [fz>0 then A3 > 0. In this case, the Hessian matriz is indefinite.

o [f 2 <0 then A\, Ao, A3 < 0, which means that in this case Hessian matrix is negative

semidefinite.

17
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The A = {(x,y,2)IR* | z < 0} set is convex es conver, since it is a hyperplane in IR®, and the
Hessian matrix is negative semidefinite for all the points of A, therefore, f is concave over

set A. Other than in set A, f is not concave or convez in any other set.

3 Applications to optimisation

The study of the convexity and concavity of functions is mainly justified because of their
interesting applications in the field of optimisation. One of the most relevant aspects is that
all the results presented below refer to global optimums rather than to local extremes as
previously studied in Unit 1. This is of great importance in economic situations; the global
maximum or minimum points are always sought while local maximums and minimums are
practically irrelevant. When we study the minimum of a function over a set, knowing if that
function is convex over such set is very useful since, if that is the case, it simplifies the search
enormously. The same holds true in the search of the maximum of a function over a set when
the function is concave over the set. We should bear in mind that the search procedure for
the local minimums and maximums of a function, which we studied in the previous chapter,

was based on the following steps:

1. Finding the critical points of the function.

2. Substituting each critical point in the Hessian matrix of the function. Depending on its

sign:

e If the Hessian matrix is positive definite in that point, then the point is a local

minimum.

e [f the Hessian matrix is negative definite in that point, then the point is a local

maximuin.

18
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e If the Hessian matrix is indefinite in that point, then it is a saddle point.

e [f the Hessian matrix is positive or negative semidefinite in that point, then the
process is not able to determine whether it is a local minimum, a local maximum

or a saddle point.

This method poses two major problems: firstly, it only determines the local optimums
of the function, but not its global optimums, and, secondly, there are often critical points
for which it is not possible to determine if they are local minimums or maximums or saddle
points of the function. The following theorems solve these two problems when we search for

the minimums of a convex function and the maximums of a concave function.

Theorem 37. When a function is differentiable and convexr over a convex set A, the concepts
critical point of f in A and global minimum of f in A are equivalent concepts. That is, if f

is convex in A, all the critical points of f in A are global minimums of f in A.

Theorem 38. When a function is differentiable and concave over a convex set A, the concepts
critical point of f in A and global maximum of f in A are equivalent concepts. That is, if f

is concave in A, all the critical points of f in A are global mazimums of f in A.

The convexity or concavity of a function also enables us to determine the number of global

maximums and minimums that a function may have in a given set.

Property 39. A convex function over a convex set A has 0, 1 or infinite global minimums
over A. If f is convex and it has more than one global minimum x1,xs, ..., T,, then all the

points of its convex envelope are also global minimums of the function.

Property 40. A concave function over a convex set A has 0, 1 or infinite global maximums
over A. If f is concave and it has more than one global maximum x1,xs, ..., T,, then all the

points of its convex envelope are also global maximums of the function.

19
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Summarising the foregoing results, we can establish the steps to study the local and global

optimums of a function in the following algorithm.

Algorithm 2 (to study the local and global optimums of a function)

Let f be a function defined on a set A.

e Step 1. Calculate the critical points of f in A. If there is none, then f does not have

local or global optimums in A. If any, go to step 2.
e Step 2. Calculate the Hessian matrix of f, H f(z). Go to step 3.

e Step 3. For any critical point x(, calculate the Hessian matrix of f at that point,

H f(z0). Then:

— If H f(z0) is positive definite then ¢ is a local minimum. Go to step 4.
— If H f(z0) negative definite then x; is a local maximum. Go to step 4.

— If H f(z0) is indefinite, then z; is a saddle point (that is, it isn’t a local minimum

not maximum). Repeat the procedure with the other critical points (if any).

— If Hf(x) is positive semidefinite then we cannot determine yet whether or not z

is a local minimum. Go to step 4.

— If H f(z0) is negative semidefinite then we cannot determine yet whether or not x

is a local maximum. Go to step 4.

e Step 4. Study if f is convex or concave in A. For it, study if A is a convex set. If
not, you can look for a convex subset. Then, consider the Hessian matrix at any point,

H(z), and then use Algorithm 1. Then:

— If f convex on A, g is a critical point and zy € A, then z¢ is a global minimum of
fin A. Moreover, if H f(x) is positive definite for all € A, then x, is the only

global minimum of f in A.

20
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— If f concave on A, xq is a critical point and xy € A, then z( is a global maximum
of fin A. Moreover, if H f(z) is negative definite for all x € A, then z; is the only

global maximum of f in A.

Example 41. Let us assume that the cost function of a firm is C(z,y) = (x —2)*+ (z —y)* +
300, where x,y are two amounts of raw materials. To determine the minimum cost of the
company, we need to find the global minimum of C over the set of points where the variables

can take on values, that is, the set A = {(z,y) € IR* /x>0,y > 0}.

Since we are looking for the minimums of the function over A, we want to know if the function
is convex over the set A and, accordingly, the first thing we must do is determine whether or
not A is convex. We can observe that A is the intersection of two hyperplanes, x > 0, y > 0,

so A is a convex set. We calculate the critical points of C':

Crlz,y) =4z -2 +2(x—y) =0

Coz,y)(z,y) =2(x —y) =0

The only critical point of C is (z,y) = (2,2), which is a point in A. In the event that the
critical point did not belong to set A, we would have concluded that C does not have any

minimum in A.

Now we calculate the Hessian matriz and then replace the critical point:

12(z —2)2+2 -2 2 -2
Hf(z,y) = = Hf(2,2)= ,
-2 2 -2 2
This matriz is positive semidefinite. So we can’t say if (2,2) is a local optimum of C' (in A)
or not (we can only say it isn’t a local mazximum). To study it, we must study the convezity

of the function in A (which we already showed it is a convez set). For it, we study the sign of

21
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HC(z,y). Its minors are Hy = 12(x — 2)* +2 > 0 and Hy = 24(x — 2)* > 0. So HC(x,y) is
positive semidefinite in IR? and C' is a convex function in IR*, which means that it is also a

convex function on A (since A is included in IR*). So, (2,2) is a global minimum of C in A.

4 Applications to Linear Programming

Definition 42. Linear Programming is a part of mathematics that studies the solution of linear

optimisation problems, that is, problems with the following features:

1. The objective is to find the global minimums or mazximums (known as optimal solutions)

of a function (known as the objective function) on a set (known as feasible region).
2. The objective function is linear.

3. The feasible region is determined by one or several linear equations or inequations

(known as constraints).

4. Variables are all greater or equal to zero.

The feasible region of a linear problem can be generally described as the set of points

(x1,x9,...,x,) € R" that verify a set of conditions of the following type:

1171 + a2 + - -+ a1 Ty, < by

9121 + A99%o + - - - + Gopx, = by

Am1T1 + Am2T2 +- AmnTn 2 bm

fElZO, 'IQZO) LR anO
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As we confirmed in example 15, these set are intersection of hyperplanes and semi-spaces in

R", and, accordingly, convex sets in IR". so we can conclude that:

Property 43. The feasible region of a linear problem is always a conver set.

The objective of a linear problem is to find the global maximums and minimums of a
linear function over the feasible region. Since linear functions are simultaneously convex and
concave in IR™ and given that the feasible region is a convex set of IR", the above-mentioned

properties 39 and 40 are verified. So:

Property 44. A linear problem has 0, 1 or infinite optimal solutions. If xq,xzs,...,x, are
optimal solutions of a linear problem, then all the points of its convex envelope are also optimal

solutions.

The Simplex algorithm is the solution method that we will use in Linear Programming. If,
by applying this method, we obtain more than one optimum, the foregoing result will enable
us to assure that in that case there will be infinite optimal solutions that we arrive at by

calculating the points of the convex envelope of the known optimal solutions.

This is of particular interest from an economic standpoint, since each time that we obtain
an optimal solution we are determining new variable combination possibilities in order to reach
the best possible value of the function. For example, let us assume that f is a cost function
dependent on the capital and work variables and that, in solving the problem, we obtain more
than one global maximum. Then each one of these represents a new method for combining the
capital and work values so that they reach the minimum possible cost. Mathematically, each
of these solutions is also as valid but, in real economic situations, there could be differences
among them with respect to items that were not incorporated in the mathematical model.
Specifically, let us assume that two solutions were found for the problem one of which means

that company workers must work 9 hours per day and another one where, for the same cost,
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they would only have to work 7 hours a day. Evidently, one of these will be more beneficial
for the staff’s morale than the other one. In any case, it is always interesting to learn about
other solutions since it could happen that in the future the set of possible values is reduced,
eliminating some of these alternative optimums. For example, if our problem is to find the
best transport route between different cities, it is always of interest to have alternative routes

in the event that one of the routes is closed due to snow, an accident, etc.

Example 45. Given a linear problem

max f (21, 22) = 21 + 2
S. a —ZL‘1+1’2§3
T+ X2 < 5

120, 29 >0

let’s suppose that two solutions (x1,x2) = (1,4) and (x1,z2) = (5,0) are known. Applying
property 44 we reach the conclusion that there are infinite solutions for the linear problem

which are precisely the points of the convex envelope of the two last given optimums:

CE[(1,4), (5,0)] = {)\(1,4) (1= N)(5,0) //\ e [0, 1]}

This implies that any point calculated in this manner is also an optimum of the linear problem.

For example,

%(1,4)+ %(5,0) —(3,2)

15 also an optimal solution to the problem.
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