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UNIT 1 

 

OPTIMISATION 

 

INTRODUCTION 

 

The problem of maximising functions, for example, utility, profit, or 

production functions, frequently comes up in the economic and 

corporate world. This is also the case regarding the problem of 

finding the minimum function, such as the cost function or the 

pollution levels in a production process.  

 

Although a mathematical solution could be applied to this type of 

problem, it may not be a feasible economic solution. If, for example, 

the goal is to maximise a utility function based on a combination of 

amounts of consumer goods, a solution in which some of the amounts 

have a negative value, although mathematically correct, would not 

make any sense. 
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Observing the interests of consumers and producers, we find that 

consumers try to divide their income, R, for purchasing certain 

1 2 nx ,x , ,x  amounts of n consumer with prices 1 2 np ,p , ,p , 

respectively, with the objective of obtaining the greatest possible 

value for the utility 1 2 nU(x ,x , ,x ) . 

 

The situation could be modelled by means of a mathematical problem 

which consists of maximising 1 2 nU(x ,x , ,x ) , taking into account that 

the goods verify the following condition: 

n

i i

i 1

x p R . 

 

That is, the sum required for purchasing ix  amounts at ip  prices, 

must be equivalent to the consumer’s income.  

 

On the other hand, producers aim to maximise their profit by 

applying one of the following options:  

 

1. Determining the level of production by minimising costs. 

2. Maximising the level of production for a level of fixed cost.  
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We will begin the study of optimised functions by assuming that no 

relationship exists between economic goods (non-conditioned 

extremes). Although this is not a realistic situation it is important to 

study it because we will use this technique for other more complex 

(and more real) situations. 

 

1.1 UNRESTRICTED OPTIMISATION 

 

In general, we will identify a market of n economic goods with the 

n  vector space, the elements of which are 1 2 n(x ,x , ,x )  vectors, with 

ix  representing the i-th array amount. 

 

We will now review the maximum and minimum concepts of a 

function. The definition is equivalent to the optimal functions of a 

single variable.  

 

Definition 1: Let U be an open subset of n , : nf U  a scalar 

function of n variables and let 0x U be a point. 

 



Unit 1. Classical Optimisation                                                                   BELÉN COBACHO 

 273 

 f has a global or absolute minimum in point 0x  if 

0( ) ( )f x f x x U . 

 f has a global or absolute maximum in point 0x  if 

0( ) ( )f x f x x U . 

 f has a local or relative minimum in point 0x  if there is a V 

boundary of  0x  so that 0( ) ( )f x f x x V . 

 f has a local or relative maximum in point 0x  if there is a V 

boundary of  0x  so that 0( ) ( )f x f x x V . 

 

We will generally use the term optimum of extreme point to refer to 

a maximum or a minimum. 

 

Definition 2: We will call the function that we want to optimise the 

objective function.   

 

Definition 3: Given a differentiable : nf U  function, 0x  

is a critical point of f if 0( ) 0df x , or, equivalently, if point 0x  

cancels all  partial derivatives of  f: 
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In general, we will only work with differentiable functions and even 

though it may not be specified, we will assume that this is the case.  

 

Theorem 4: A necessary condition so that point  0x  is a local 

optimum of f is that 0x  should be a critical point. Thai is to say, if 0x  

is not a critical point, then it isn’t a local optimum.  

 

If 0x  is a critical point, then it can occur that 0x  is a local optimum or 

not. We can see it in examples 5 and 6. 

 

Example 5: We consider the function  

2

2 2

f :

x, y x y
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The partial derivatives of this function are: 

 

f
(x, y) 2x

x

f
(x, y) 2y

y

 

 

Point 0x (0,0)  is the only solution to the equations system: 

 

2x 0

2y 0
 

 

and, consequently, (0,0)  is the only critical point of function f.  

Furthermore, it is easy to see that f presents a global minimum 

in (0,0) , since 2 2 2f (x,y) x y 0 f (0,0) (x,y) . 

 

Example 6: We will now consider the function 

2

2 2

f :

x, y x y
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Point 0x (0,0)  is the only critical point of f. Nevertheless, (0,0)  is 

not a local maximum or a local minimum, as shown below. If we 

consider, for example, point (0.01, 0) , which is a point close to (0,0) , 

and we compute its image: 

 

2f (0.01, 0) 0.01 0.0001 0 f (0,0) . 

 

Therefore (0,0)  is not a local maximum, because there are points 

close to (0,0)  whose image is greater than f (0,0) . 

 

Now, if we take a point (0, 0.01)  close to (0,0) ,  

 

2f (0, 0.01) 0.01 0.0001 0 f (0,0) , 

 

So (0,0)   is not a local minimum. 
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Definition 7: We understand as saddle point a critical point that is 

not a local maximum or minimum.   

 

Thus, point (0,0)  in example 6 above is a saddle point. 

 

It was easy with these functions to study whether or not the critical 

points were local optimums of the functions. This, however, will not 

always be as simple and, whenever possible, we will resort to other 

methods that enable us to check whether or not a critical point is a 

local optimum.  

 

Theorem 8: 0x U  as a critical point of a scalar 

function : nf U , which accepts continuous partial derivates 

of order 2, that is, a 2C class function. We denote the Hessian matrix 

of f at any x point as ( )Hf x . The following results arrive:  

 

1. If the 0( )Hf x  matrix is negative definite, then 0x  is a maximum 

local of f .   

2. If the 0( )Hf x  matrix is positive definite, then 0x  is a local 

minimum of f .  



Mathematics for Business II                                                                   BELÉN COBACHO 

 278 

3. If the 0( )Hf x  matrix is indefinite, then  0x  is not a local maximum 

or minimum, that is, it is a saddle point. 

4. If the 0( )Hf x  matrix is negative semi-definite, then we can only 

assure that 0x  is not a local minimum, although we do not know 

whether or not it is a maximum.  

5. If the 0( )Hf x  matrix is positive semi-definite, then we can only 

assure that 0x  is not a local maximum but we do not know 

whether or not it is a minimum.   

 

Let us check with this theorem the results we obtained in the previous 

examples. 

 

Example 9: The Hessian matrix of the function 2 2f (x,y) x y  at any 

point is
2 0

Hf (x, y)
0 2

, and
2 0

Hf (0,0)
0 2

. 

 

Since Hf(0,0)  is positive definite, we can assure that (0,0)  is a local 

minimum. 
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Note: Note that we know that point (0,0)  in the example above is also 

a global minimum.  However, the theorem only assures us that it is a 

local minimum. We will study later how we can determine if a local 

optimum is also a global optimum.  

 

Example 10: The matrix Hf(0,0)  in example 6 above is indefinite 

and, consequently, point (0,0)  is a saddle point. 

 

Example 11: Let us consider a firm with the revenue 

function I(x, y) 12x 18y , where12 and 18 m.u. are the unit prices of 

the goods produced, and x, y the amounts produced of such goods.  

Let us also assume that the cost function of this production process is 

as follows:   

 

2 2C(x,y)=2x  +xy + 2y . 

 

The problem that we are considering is how to optimise profit, that is, 

to maximise the function 

 

2 2B(x, y) 12x 18y-(2x xy 2y ) . 
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Let us look at the critical points of this function. 

 

B
0 12 4x y 0

x

B
0 18 x 4y 0

y

 
      


     

 

. 

 

The critical point, therefore, is x 2 , y 4 , that is, the point (2,4) . 

 

The Hessian matrix of B at any point is  

 

4 1
HB(x, y)

1 4

  
  

  
. 

Evaluated at the point (2, 4) is the same matrix: 
4 1

HB(2,4)
1 4

  
  

  
 

 

Since HB(2,4)  is negative definite, point (2,4)  is a local maximum. 

 

The following theorem ensures that if the Hessian matrix is negative 

or positive definite, not only at the critical point but also at all the 
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points where the function is defined, then the critical point is not only 

a local optimum, but also a global optimum, and the only one.  

 

Theorem 12: Let 0x U  be a critical point of a scalar 

function : nf U , class 2C . We arrive at the following results. 

 

1. If the ( )Hf x  matrix is negative definite at any point x U , then 

0x  is a global maximum and also the only one. 

2. If the ( )Hf x  matrix is positive definite at any point x U , then 

0x  is a global minimum of f and it is also the only one. 

 

Example 11 above shows that the critical point that we obtained is 

not only local but also the only global maximum 

 

1.2 OPTIMISATION WITH EQUALITY RESTRICTIONS 

 

As we mentioned at the beginning of the chapter, the problem now is 

to obtain the values of the variables for which a function 

1 2 nf (x ,x , ,x )  reaches its optimum, knowing that these variables are 

interrelated by means of certain restrictions. Restrictions could be due 
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to equalities or inequalities. In this chapter we will only cover the 

optimisation of equality restrictions, being the other one left for 

subsequent chapters. 

 

The overall statement for the problem would be the following: 

 

Find the optimum of a function 
1 2
( , , , )nf x x x  subject to restrictions 







1 1 2 1

2 1 2 2

1 2

( , , , )

( , , , )

( , , , )

n

n

m n m

g x x x b

g x x x b

g x x x b

 

We will use two methods for solving this type of problem. 

 

1.2.1 SUBSTITUTION METHOD 

 

This method consists of transforming the initial problem with 

restrictions into a problem without restrictions, which we already 

know how to solve (section 1.1). The procedure is as follows:   

 

1. In the restrictions, clear as many variables as possible (m) 

depending on the remaining n-m variables. This is not always 
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possible; to be able to do this, we need that the function 

expressed by each variable according to the other ones is a 

continuous function. When this isn’t a continuous function, 

then the Lagrange method must be used (section 1.2.2). 

2. Replace the m cleared variables in the expression of the 

objective function. By doing this, the remaining function 

would only have n-m variables.   

3. Optimise the new objective function by applying the 

unrestricted optimisation procedure.   

 

Example 13: Let us assume that we want to find the optimum of the 

function 2f (x,y) 10x 2y  , knowing that the variables verify the 

relationship x y 1  . 

First of all, it is important to identify the elements of the problem: the 

objective function is 2f (x,y) 10x 2y  . There’s only one restriction, 

given by the  equality function g(x, y) x y 1.    

 

In the restriction, we can clear one of the variables depending on the 

other, for example x 1 y  .  
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Now we substitute in the objective function, having the remaining 

function (that we call 
2f ) only one variable:   

 

2 2

2f (y) 10(1 y) 2y 10 10y 2y      . 

 

To optimise this new function, now without restrictions, we proceed 

as stated in the method for the unrestricted optimisation. We must 

first calculate its critical points: 

'

2f (y) 10 4y 0    . 

The only critical point of 
2f is

5
y

2
  . Let us see if it is an optimum. 

'' ''

2 2f (y) 4 ; f ( 5/ 2) 4     . 

This means that 
5

y
2

   is a local maximum of function 
2f . Now we 

compute 
5 7

1 1
2 2

x y
 

      
 

. 

And we can conclude that the point 
7 5

,
2 2

 
 

 
 is a local maximum of 

function f conditioned to x y 1  . 
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When variables cannot be continuously cleared, we cannot apply the 

substitution method and must then resort to the Lagrange method 

which we describe below. 

 

1.2.2 LAGRANGE METHOD 

 

The method involves the following steps:  

 

1. Re-write the restrictions so that the independent term is 0 in all of 

them. Then build up a new function that will depend on the initial 

variables of the problem plus m new variables (as many as 

restrictions there are), 1 2 m, , ,   , which we will call Lagrange 

multipliers. This function is built using the following expression:  

 1 2 m 1 1 2 2 m mL x, , , , f (x) g (x) g (x) g (x)        , 

 

where the ig  functions were the ones that defined the restrictions. 

The L function is called the Lagrange function.  

 

Observation: Note that any point x that verifies the restrictions 

complies with  1 2 mL x, , , , f (x)    , since ig (x) 0 . The connection 
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between the optimums of the L function and the conditioned 

optimums of the f function is based on this relationship. 

 

2. Calculate the partial derivates of the Lagrange function and 

make them equal 0 to calculate the critical points of L. 

1

n

1

m

L
0

x

L
0

x

L
0

L
0




 


 
 



 

  


 


 

 

 

Now the following steps must be carried out for each critical point: 

 

3. Calculate the Hessian matrix of L, but only with the second 

order derivatives in respect of the initial variables of the problem 

 1 2 nx ,x , , x . We will call this matrix xH L(x, ) . Then, substitute the 

critical point in that matrix, that is, calculate x 0 0H L(x , ) . 
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4. Calculate the analytical expression of the quadratic from 

associated to that matrix. 

5. Calculate the partial derivatives of the restrictions and 

substitute the critical point in them, 
0g(x ) . 

6. Multiply the resulting vector (or matrix) by the original 

variables and make this equal 0: 

0g(x ) x 0   . 

We will call S the vector subspace defined by these equations. 

7. Study the sign of the quadratic form x 0 0H L(x , )  restricted to the 

subspace S. Then: 

 

 If x 0 0H L(x , )  restricted to S is negative definite, then point 

0x  is a conditioned local maximum of function f.   

 If x 0 0H L(x , )  restricted to S is positive definite, then point 

0x  is a conditioned minimum local of function f. 

 If x 0 0H L(x , )  restricted to S is indefinite, then point 0x  is 

neither a conditioned local minimum nor a conditioned local 

maximum.   
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 If
x 0 0H L(x , )  restricted to S is negative semidefinite, then 

point 0x  is not a conditioned local minimum.   

 If 
x 0 0H L(x , )  restricted to S is positive semidefinite, then 

point 0x  is not a conditioned local maximum.  

 

Interpretation of Lagrange multipliers: Lagrange multipliers 

measure the sensitivity of the optimum value of the objective 

function against the variations of the restriction constants. 

Let’s suppose that we have the problem: 

 

1 1

2 2

m m

Optimise f (x)

restricted to

g (x) b

g (x) b

g (x) b

 

 

and 0x  is a conditioned local optimum. Then the Lagrange multiplier 

i  measures, approximately, the variation that would suffer the 

optimum objective value, 0( )f x  if we increase in 1 unit the 
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independent term ib , and the rest of the independent terms remain 

constant..  

 

For example, in a production planning problem:  

 

Max   profit 

r.t.  availabilities 

 

the i
th

 multiplier measures the approximate increase in maximum 

profit when there is one unit plus of the i
th

 resource.  If the market 

price of the resource is less than the value of this multiplier (and, 

consequently, less than the increase in profit) it would be profitable 

to increase the use of such resource or otherwise it would not be 

profitable. This is the reason why the Lagrange multiplier is known 

as the shadow price. 

 

Example 14: Let us consider the previous example: 

 

2Max f (x, y) 10x 2y

s.a x y 1
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We had already solved it using the substitution method and the result 

was that point  
7 5

,
2 2

 
 

 
 was a conditioned local maximum.  We will 

now solve it by using the Lagrange method. 

 

We write the restriction so that the independent term is 0:  

x y 1 0 . 

 Then, the Lagrange function is:  

 

2L(x,y, ) 10x 2y (x y 1)  

 

Note that only one Lagrange multiplier was entered, since there is 

only one restriction.   

We then calculate the partial derivatives of L and make them equal 

zero in order to calculate the critical points.  
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L
10 0

x

L
4y 0

y

L
(x y 1) 0

 

 

The only solution resulting from this equation system is:  
7

x
2

, 

5
y

2
, 10 . So, 

7 5
, ,10

2 2
 is the only critical point of L. 

 

The following step consists of calculating the partial 2
nd

 order 

derivatives of L with respect to the initial variables of the problem, 

that is, in relation to the x and y variables and calculating the Hessian 

matrix with these derivatives.  

 

0 0
HL(x, y, )

0 4
. 

 

When we substitute point 
7 5

, ,10
2 2

 in the matrix, this remains the 

same: 
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0 07 5
HL , ,10

2 2 0 4
. 

 

The quadratic form associated with this matrix is 2Q(x,y) 4y . 

 

Now, the gradient vector of the restriction is  

g g
g(x,y) , (1,1)

x y
. 

 

Again, if we replace point 
7 5

,
2 2

 the gradient vector remains the 

same: 
7 5

g , (1,1)
2 2

 

 

The equation resulting from multiplying the gradient vector by the 

( , )x y vector and making equal 0 is: 

x
(1,1) 0

y
 

That is, x y 0 . 
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To calculate the sign of the quadratic form Q restricted to subspace 

2S (x,y) / x y 0 , we must clear one of the variables and 

substitute in Q.  If, for example, we clear the y variable, we arrive 

at y x . Accordingly: 

2 2Q(x) 4( x) 4x , 

 

which is negative definite and, consequently, point 
7 5

,
2 2

 is a 

conditioned local maximum. The maximum value of the objective 

function would then be  
2

7 5 7 5 45
f , 10 2

2 2 2 2 2
. 

 

Since 10 , we can say that the f function would increase by 

approximately 10 units if the restriction constant increases by a unit, 

that is, if the restriction would be x y 2  instead of x y 2 , then 

the maximum value of the objective function would be approximately  

45 65
10

2 2
. 


